Accelerated Search for Active Agents to Treat Alzheimer’s and Parkinson’s

The grant shall be used to accelerate the search for active agents to treat diseases that are caused by protein misfolding. These include Alzheimer’s and Parkinson’s. The grant amount will be matched by the MDC, a member institution of the Helmholtz Association, which means that the total funding for the research project will be EUR 1.35 million.

The grant shall be used to develop a standardized screening platform for the identification of active agents that can be utilized by the pharmaceutical industry. The project is intended to result in the establishment of a spin-off company. The key element will be a system to identify active agents that impact protein aggregates that are toxic for brain cells. Protein aggregation plays a significant role in common neurological diseases such as Alzheimer’s and Parkinson’s or the rare Huntington’s disease.

In the pathogenesis of these diseases, a misfolding of specific proteins occurs in the brain cells, leading to an aggregation of harmful structures that cannot be disposed of. This increasingly leads to degeneration of the brain cells in the affected individuals and subsequently – depending on the protein and the disease – to memory loss, movement disorders, psychosis and dementia. Altogether, about 40 diseases can be attributed to protein misfolding, including diabetes mellitus.

The research group of Professor Wanker has been studying protein misfolding for over ten years and has developed innovative concepts and methods to test active agents for their capacity to intervene in protein misfolding processes. One of the group’s discoveries is that epigallocatechin-3-gallate (EGCG), a green tea extract, binds to toxic misfolded products and modulates these into nontoxic structures.

The methods hitherto used by the group shall now be incorporated into a technology platform to test larger libraries of potential active agents. This will include a high-throughput robotic system developed by the researchers for investigating interactions among proteins but also between proteins and other substances. In 2008 they received the Erwin Schrödinger Prize for research in this area.

The new Helmholtz Validation Fund, according to the Helmholtz Association announcement, will also fund a project of the Helmholtz Center Dresden-Rossendorf and the Research Center Jülich. The aim of this project is to improve imaging techniques for drug development to treat Alzheimer’s.

Until 2015 the Initiative and Networking Fund of the Helmholtz Association has allocated a total of EUR 26 million to the Helmholtz Validation Fund to fund projects at Helmholtz centers. Including the matching funds from the centers, more than EUR 50 million will be available for technology transfer projects.

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin
Phone: +49 (0) 30 94 06 – 38 96
Fax: +49 (0) 30 94 06 – 38 33
e-mail: presse@mdc-berlin.de

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors