Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Accelerated Search for Active Agents to Treat Alzheimer’s and Parkinson’s

24.02.2012
Professor Erich Wanker of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch and of the Excellence Cluster Neurocure is to receive EUR 675 000 in funding from the Helmholtz Association over the next two years.

The grant shall be used to accelerate the search for active agents to treat diseases that are caused by protein misfolding. These include Alzheimer’s and Parkinson’s. The grant amount will be matched by the MDC, a member institution of the Helmholtz Association, which means that the total funding for the research project will be EUR 1.35 million.

The grant shall be used to develop a standardized screening platform for the identification of active agents that can be utilized by the pharmaceutical industry. The project is intended to result in the establishment of a spin-off company. The key element will be a system to identify active agents that impact protein aggregates that are toxic for brain cells. Protein aggregation plays a significant role in common neurological diseases such as Alzheimer’s and Parkinson’s or the rare Huntington’s disease.

In the pathogenesis of these diseases, a misfolding of specific proteins occurs in the brain cells, leading to an aggregation of harmful structures that cannot be disposed of. This increasingly leads to degeneration of the brain cells in the affected individuals and subsequently – depending on the protein and the disease – to memory loss, movement disorders, psychosis and dementia. Altogether, about 40 diseases can be attributed to protein misfolding, including diabetes mellitus.

The research group of Professor Wanker has been studying protein misfolding for over ten years and has developed innovative concepts and methods to test active agents for their capacity to intervene in protein misfolding processes. One of the group’s discoveries is that epigallocatechin-3-gallate (EGCG), a green tea extract, binds to toxic misfolded products and modulates these into nontoxic structures.

The methods hitherto used by the group shall now be incorporated into a technology platform to test larger libraries of potential active agents. This will include a high-throughput robotic system developed by the researchers for investigating interactions among proteins but also between proteins and other substances. In 2008 they received the Erwin Schrödinger Prize for research in this area.

The new Helmholtz Validation Fund, according to the Helmholtz Association announcement, will also fund a project of the Helmholtz Center Dresden-Rossendorf and the Research Center Jülich. The aim of this project is to improve imaging techniques for drug development to treat Alzheimer’s.

Until 2015 the Initiative and Networking Fund of the Helmholtz Association has allocated a total of EUR 26 million to the Helmholtz Validation Fund to fund projects at Helmholtz centers. Including the matching funds from the centers, more than EUR 50 million will be available for technology transfer projects.

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/
http://www.helmholtz.de/en/research/technologietransfer/foerderinstrumente/helmholtz_validierungsfonds/

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>