Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Accelerated Search for Active Agents to Treat Alzheimer’s and Parkinson’s

24.02.2012
Professor Erich Wanker of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch and of the Excellence Cluster Neurocure is to receive EUR 675 000 in funding from the Helmholtz Association over the next two years.

The grant shall be used to accelerate the search for active agents to treat diseases that are caused by protein misfolding. These include Alzheimer’s and Parkinson’s. The grant amount will be matched by the MDC, a member institution of the Helmholtz Association, which means that the total funding for the research project will be EUR 1.35 million.

The grant shall be used to develop a standardized screening platform for the identification of active agents that can be utilized by the pharmaceutical industry. The project is intended to result in the establishment of a spin-off company. The key element will be a system to identify active agents that impact protein aggregates that are toxic for brain cells. Protein aggregation plays a significant role in common neurological diseases such as Alzheimer’s and Parkinson’s or the rare Huntington’s disease.

In the pathogenesis of these diseases, a misfolding of specific proteins occurs in the brain cells, leading to an aggregation of harmful structures that cannot be disposed of. This increasingly leads to degeneration of the brain cells in the affected individuals and subsequently – depending on the protein and the disease – to memory loss, movement disorders, psychosis and dementia. Altogether, about 40 diseases can be attributed to protein misfolding, including diabetes mellitus.

The research group of Professor Wanker has been studying protein misfolding for over ten years and has developed innovative concepts and methods to test active agents for their capacity to intervene in protein misfolding processes. One of the group’s discoveries is that epigallocatechin-3-gallate (EGCG), a green tea extract, binds to toxic misfolded products and modulates these into nontoxic structures.

The methods hitherto used by the group shall now be incorporated into a technology platform to test larger libraries of potential active agents. This will include a high-throughput robotic system developed by the researchers for investigating interactions among proteins but also between proteins and other substances. In 2008 they received the Erwin Schrödinger Prize for research in this area.

The new Helmholtz Validation Fund, according to the Helmholtz Association announcement, will also fund a project of the Helmholtz Center Dresden-Rossendorf and the Research Center Jülich. The aim of this project is to improve imaging techniques for drug development to treat Alzheimer’s.

Until 2015 the Initiative and Networking Fund of the Helmholtz Association has allocated a total of EUR 26 million to the Helmholtz Validation Fund to fund projects at Helmholtz centers. Including the matching funds from the centers, more than EUR 50 million will be available for technology transfer projects.

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/
http://www.helmholtz.de/en/research/technologietransfer/foerderinstrumente/helmholtz_validierungsfonds/

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>