Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new weapon in the war against HIV-AIDS: Combined antiviral and targeted chemotherapy

23.06.2009
A discovery by a team of Canadian and American researchers could provide new ways to fight HIV-AIDS. According to a new study published in Nature Medicine, HIV-AIDS could be treated through a combination of targeted chemotherapy and current Highly Active Retroviral (HAART) treatments. This radical new therapy would make it possible to destroy both the viruses circulating in the body as well as those playing hide-and-seek in immune system cells.

The study was led by Dr. Rafick-Pierre Sékaly, of the Université de Montréal. Dr. Jean-Pierre Routy of the Research Institute of the McGill University Health Centre (RI-MUHC) and scientists from the National Institutes of Health (NIH) and the University of Minnesota in the United States also collaborated on the investigation.

To date, anti-AIDS treatments have been stymied by "HIV reservoirs" – immune system cells where the virus hides and where existing HAART treatments cannot reach. The researchers successfully identified the cells where HIV hides and the "stealth" mechanisms that allow the virus to escape existing treatments. This breakthrough opens the way towards innovative therapies that are completely different from current approaches.

"Our results argue in favour of a strategy similar to the one used against leukemia, which is targeted chemotherapy, associated with a targeted immune treatment. This would make it possible to destroy the cells containing a virus, while giving the immune system time to regenerate with healthy cells," says Dr. Rafick-Pierre Sékaly, a professor at the Université de Montréal, researcher at the Centre Hospitalier de Université de Montréal (CHUM), director of INSERM 743 and scientific director of the Vaccine and Gene Therapy Institute of Florida.

"For the first time, this study proves that the HIV reservoirs are not due to a lack of potency of the antiretroviral drugs, but to the virus hiding inside two different types of long life CD4 memory immune cells," explains Dr. Jean-Pierre Routy, a hematologist with the MUHC, researcher in infection and immunity at the RI-MUHC and professor of hematology at McGill University. "There are several types of HIV reservoirs, each necessitating a different treatment to eliminate them."

Indeed, once the virus is hidden in these reservoir cells, it becomes dependent on them: if the cell lives, the virus lives, but if the cell dies, so does the virus. As such, destroying these immune cells will allow for the elimination of the resilient or hidden parts of the virus. Existing HAART treatments destroy the viruses circulating in the body, yet cannot reach those hidden in reservoir cells.

"We now have brand-new options to fight HIV," concludes Nicolas Chomont, a postdoctoral intern at the Université de Montréal's Department of Microbiology and Immunology and one of the co-authors of this study. "The combination of fundamental and clinical approaches led to amazing results that allow us to elucidate another mystery of this virus of a thousand faces."

These new therapeutic options will require many more years of research before they are validated and become a reality for patients. However, this study represents an invaluable work plan that will provide a map for many laboratories around the world.

Funding

This study was funded by the American Foundation for AIDS Research (amfAR), the National Institutes of Health, the Canadian Institutes of Health Research and the FRSQ-AIDS and Infectious Diseases Network.

Partners

The study, "HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation," published in Nature Medicine, was coauthored by Rafick-Pierre Sékaly, Elias K. Haddad, Nicolas Chomont, Mohamed El Far, Petronela Ancuta, Lydie Trautmann, Francesco A. Procopio, Bader Yassine-Diab and Geneviève Boucher of the Université de Montréal and Centre Hospitalier de Université de Montréal (CHUM), Jean-Pierre Routy, Mohamed-Rachid Boulassel and Georges Ghattas of the McGill University Health Centre (MUHC) and McGill University, Brenna J. Hill, Daniel C. Douek and Jason M. Brenchley of the National Institutes of Health, U.S.A., and Timothy W. Schacker of the University of Minnesota, U.S.A.

Isabelle Kling | EurekAlert!
Further information:
http://www.muhc.mcgill.ca
http://www.mcgill.ca

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>