Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new weapon in the war against HIV-AIDS: Combined antiviral and targeted chemotherapy

23.06.2009
A discovery by a team of Canadian and American researchers could provide new ways to fight HIV-AIDS. According to a new study published in Nature Medicine, HIV-AIDS could be treated through a combination of targeted chemotherapy and current Highly Active Retroviral (HAART) treatments. This radical new therapy would make it possible to destroy both the viruses circulating in the body as well as those playing hide-and-seek in immune system cells.

The study was led by Dr. Rafick-Pierre Sékaly, of the Université de Montréal. Dr. Jean-Pierre Routy of the Research Institute of the McGill University Health Centre (RI-MUHC) and scientists from the National Institutes of Health (NIH) and the University of Minnesota in the United States also collaborated on the investigation.

To date, anti-AIDS treatments have been stymied by "HIV reservoirs" – immune system cells where the virus hides and where existing HAART treatments cannot reach. The researchers successfully identified the cells where HIV hides and the "stealth" mechanisms that allow the virus to escape existing treatments. This breakthrough opens the way towards innovative therapies that are completely different from current approaches.

"Our results argue in favour of a strategy similar to the one used against leukemia, which is targeted chemotherapy, associated with a targeted immune treatment. This would make it possible to destroy the cells containing a virus, while giving the immune system time to regenerate with healthy cells," says Dr. Rafick-Pierre Sékaly, a professor at the Université de Montréal, researcher at the Centre Hospitalier de Université de Montréal (CHUM), director of INSERM 743 and scientific director of the Vaccine and Gene Therapy Institute of Florida.

"For the first time, this study proves that the HIV reservoirs are not due to a lack of potency of the antiretroviral drugs, but to the virus hiding inside two different types of long life CD4 memory immune cells," explains Dr. Jean-Pierre Routy, a hematologist with the MUHC, researcher in infection and immunity at the RI-MUHC and professor of hematology at McGill University. "There are several types of HIV reservoirs, each necessitating a different treatment to eliminate them."

Indeed, once the virus is hidden in these reservoir cells, it becomes dependent on them: if the cell lives, the virus lives, but if the cell dies, so does the virus. As such, destroying these immune cells will allow for the elimination of the resilient or hidden parts of the virus. Existing HAART treatments destroy the viruses circulating in the body, yet cannot reach those hidden in reservoir cells.

"We now have brand-new options to fight HIV," concludes Nicolas Chomont, a postdoctoral intern at the Université de Montréal's Department of Microbiology and Immunology and one of the co-authors of this study. "The combination of fundamental and clinical approaches led to amazing results that allow us to elucidate another mystery of this virus of a thousand faces."

These new therapeutic options will require many more years of research before they are validated and become a reality for patients. However, this study represents an invaluable work plan that will provide a map for many laboratories around the world.

Funding

This study was funded by the American Foundation for AIDS Research (amfAR), the National Institutes of Health, the Canadian Institutes of Health Research and the FRSQ-AIDS and Infectious Diseases Network.

Partners

The study, "HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation," published in Nature Medicine, was coauthored by Rafick-Pierre Sékaly, Elias K. Haddad, Nicolas Chomont, Mohamed El Far, Petronela Ancuta, Lydie Trautmann, Francesco A. Procopio, Bader Yassine-Diab and Geneviève Boucher of the Université de Montréal and Centre Hospitalier de Université de Montréal (CHUM), Jean-Pierre Routy, Mohamed-Rachid Boulassel and Georges Ghattas of the McGill University Health Centre (MUHC) and McGill University, Brenna J. Hill, Daniel C. Douek and Jason M. Brenchley of the National Institutes of Health, U.S.A., and Timothy W. Schacker of the University of Minnesota, U.S.A.

Isabelle Kling | EurekAlert!
Further information:
http://www.muhc.mcgill.ca
http://www.mcgill.ca

More articles from Health and Medicine:

nachricht Research offers clues for improved influenza vaccine design
09.04.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Injecting gene cocktail into mouse pancreas leads to humanlike tumors
06.04.2018 | University of Texas Health Science Center at San Antonio

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Improved stability of plastic light-emitting diodes

19.04.2018 | Power and Electrical Engineering

Enduring cold temperatures alters fat cell epigenetics

19.04.2018 | Life Sciences

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>