Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new weapon in the war against HIV-AIDS: Combined antiviral and targeted chemotherapy

23.06.2009
A discovery by a team of Canadian and American researchers could provide new ways to fight HIV-AIDS. According to a new study published in Nature Medicine, HIV-AIDS could be treated through a combination of targeted chemotherapy and current Highly Active Retroviral (HAART) treatments. This radical new therapy would make it possible to destroy both the viruses circulating in the body as well as those playing hide-and-seek in immune system cells.

The study was led by Dr. Rafick-Pierre Sékaly, of the Université de Montréal. Dr. Jean-Pierre Routy of the Research Institute of the McGill University Health Centre (RI-MUHC) and scientists from the National Institutes of Health (NIH) and the University of Minnesota in the United States also collaborated on the investigation.

To date, anti-AIDS treatments have been stymied by "HIV reservoirs" – immune system cells where the virus hides and where existing HAART treatments cannot reach. The researchers successfully identified the cells where HIV hides and the "stealth" mechanisms that allow the virus to escape existing treatments. This breakthrough opens the way towards innovative therapies that are completely different from current approaches.

"Our results argue in favour of a strategy similar to the one used against leukemia, which is targeted chemotherapy, associated with a targeted immune treatment. This would make it possible to destroy the cells containing a virus, while giving the immune system time to regenerate with healthy cells," says Dr. Rafick-Pierre Sékaly, a professor at the Université de Montréal, researcher at the Centre Hospitalier de Université de Montréal (CHUM), director of INSERM 743 and scientific director of the Vaccine and Gene Therapy Institute of Florida.

"For the first time, this study proves that the HIV reservoirs are not due to a lack of potency of the antiretroviral drugs, but to the virus hiding inside two different types of long life CD4 memory immune cells," explains Dr. Jean-Pierre Routy, a hematologist with the MUHC, researcher in infection and immunity at the RI-MUHC and professor of hematology at McGill University. "There are several types of HIV reservoirs, each necessitating a different treatment to eliminate them."

Indeed, once the virus is hidden in these reservoir cells, it becomes dependent on them: if the cell lives, the virus lives, but if the cell dies, so does the virus. As such, destroying these immune cells will allow for the elimination of the resilient or hidden parts of the virus. Existing HAART treatments destroy the viruses circulating in the body, yet cannot reach those hidden in reservoir cells.

"We now have brand-new options to fight HIV," concludes Nicolas Chomont, a postdoctoral intern at the Université de Montréal's Department of Microbiology and Immunology and one of the co-authors of this study. "The combination of fundamental and clinical approaches led to amazing results that allow us to elucidate another mystery of this virus of a thousand faces."

These new therapeutic options will require many more years of research before they are validated and become a reality for patients. However, this study represents an invaluable work plan that will provide a map for many laboratories around the world.

Funding

This study was funded by the American Foundation for AIDS Research (amfAR), the National Institutes of Health, the Canadian Institutes of Health Research and the FRSQ-AIDS and Infectious Diseases Network.

Partners

The study, "HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation," published in Nature Medicine, was coauthored by Rafick-Pierre Sékaly, Elias K. Haddad, Nicolas Chomont, Mohamed El Far, Petronela Ancuta, Lydie Trautmann, Francesco A. Procopio, Bader Yassine-Diab and Geneviève Boucher of the Université de Montréal and Centre Hospitalier de Université de Montréal (CHUM), Jean-Pierre Routy, Mohamed-Rachid Boulassel and Georges Ghattas of the McGill University Health Centre (MUHC) and McGill University, Brenna J. Hill, Daniel C. Douek and Jason M. Brenchley of the National Institutes of Health, U.S.A., and Timothy W. Schacker of the University of Minnesota, U.S.A.

Isabelle Kling | EurekAlert!
Further information:
http://www.muhc.mcgill.ca
http://www.mcgill.ca

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>