Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A possible treatment for Rett syndrome

10.02.2009
Study suggests molecule can reverse some symptoms

A molecule that promotes brain development could serve as a possible treatment for Rett syndrome, the most common form of autism in girls, according to researchers at MIT's Picower Institute for Learning and Memory and the Whitehead Institute for Biomedical Research.

The researchers found that injecting the molecule into mice that have an equivalent of Rett syndrome helped the animals' faulty brain cells develop normally and reversed some of the disorder's symptoms.

The work, reported in the Feb. 10 online edition of the Proceedings of the National Academy of Sciences (PNAS), is expected to lead to new human clinical trials for a derivative of growth factor-1 (IGF-1), currently used to treat growth disorders and control blood glucose. The MIT study indicates that IGF-1 could potentially lessen the severity of symptoms of Rett syndrome.

"We demonstrate that a major underlying mechanism behind Rett syndrome in mice is that synapses in the brain remain immature and show persistent, abnormal plasticity into adulthood," said Daniela Tropea, a postdoctoral fellow at the Picower Institute and lead author of the study. "We also propose that a therapeutic based on this mechanism would be directly applicable to humans."

Injecting mice with a peptide fragment of IGF-1, used by the brain for neuronal and synaptic development, reverses a large number of symptoms of mice genetically engineered to display Rett syndrome-like symptoms.

"IGF-1 is critical for brain development. It activates molecules within neurons that make synapses mature," said study co-author Mriganka Sur, the Newton Professor of Neuroscience at the Picower Institute and head of the MIT Department of Brain and Cognitive Sciences. "This is a mechanism-based therapeutic for Rett syndrome. It is possible that this or similar therapeutics would apply to other forms of autism, which also have as their basis a persistent immaturity of synapses."

HELPING NERVE CELLS MATURE

Rett syndrome, an inherited neurological disorder, causes loss of speech, reduced head size, breathing and heart abnormalities and autism-like symptoms in one out of 10,000 girls.

In 85 percent of girls with Rett syndrome, the culprit is a faulty gene coding for methyl CpG-binding protein 2, (MeCP2), critical for nerve cell maturation. A deficit in MeCP2 stops neurons from growing spines, the branch-like projections needed for cell-to-cell communication.

Recent genetic studies have shown that increasing MeCP2 expression in mice led neurons to grow new spines, indicating that the disease could be reversible. Increased IGF-1 seems to make up for the lack of MeCP2.

Daily injections of the insulin-like growth factor IGF-1 extended the life spans of infant Rett syndrome mice, improved their motor function and breathing patterns and reduced irregularities in their heart rates. In addition, their brains had more nerve-cell spines.

IGF-1 affects almost every cell in the human body, especially in muscle, cartilage, bone, liver, kidney, nerves, skin and lungs. In addition to its insulin-like effects, IGF-1 also regulates cell growth and development in nerve cells.

"This is the first realistic way for a drug-like molecule injected into the bloodstream to relieve Rett syndrome symptoms," said Whitehead member Rudolf Jaenisch, whose lab participated in the research.

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>