Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A possible treatment for Rett syndrome

10.02.2009
Study suggests molecule can reverse some symptoms

A molecule that promotes brain development could serve as a possible treatment for Rett syndrome, the most common form of autism in girls, according to researchers at MIT's Picower Institute for Learning and Memory and the Whitehead Institute for Biomedical Research.

The researchers found that injecting the molecule into mice that have an equivalent of Rett syndrome helped the animals' faulty brain cells develop normally and reversed some of the disorder's symptoms.

The work, reported in the Feb. 10 online edition of the Proceedings of the National Academy of Sciences (PNAS), is expected to lead to new human clinical trials for a derivative of growth factor-1 (IGF-1), currently used to treat growth disorders and control blood glucose. The MIT study indicates that IGF-1 could potentially lessen the severity of symptoms of Rett syndrome.

"We demonstrate that a major underlying mechanism behind Rett syndrome in mice is that synapses in the brain remain immature and show persistent, abnormal plasticity into adulthood," said Daniela Tropea, a postdoctoral fellow at the Picower Institute and lead author of the study. "We also propose that a therapeutic based on this mechanism would be directly applicable to humans."

Injecting mice with a peptide fragment of IGF-1, used by the brain for neuronal and synaptic development, reverses a large number of symptoms of mice genetically engineered to display Rett syndrome-like symptoms.

"IGF-1 is critical for brain development. It activates molecules within neurons that make synapses mature," said study co-author Mriganka Sur, the Newton Professor of Neuroscience at the Picower Institute and head of the MIT Department of Brain and Cognitive Sciences. "This is a mechanism-based therapeutic for Rett syndrome. It is possible that this or similar therapeutics would apply to other forms of autism, which also have as their basis a persistent immaturity of synapses."

HELPING NERVE CELLS MATURE

Rett syndrome, an inherited neurological disorder, causes loss of speech, reduced head size, breathing and heart abnormalities and autism-like symptoms in one out of 10,000 girls.

In 85 percent of girls with Rett syndrome, the culprit is a faulty gene coding for methyl CpG-binding protein 2, (MeCP2), critical for nerve cell maturation. A deficit in MeCP2 stops neurons from growing spines, the branch-like projections needed for cell-to-cell communication.

Recent genetic studies have shown that increasing MeCP2 expression in mice led neurons to grow new spines, indicating that the disease could be reversible. Increased IGF-1 seems to make up for the lack of MeCP2.

Daily injections of the insulin-like growth factor IGF-1 extended the life spans of infant Rett syndrome mice, improved their motor function and breathing patterns and reduced irregularities in their heart rates. In addition, their brains had more nerve-cell spines.

IGF-1 affects almost every cell in the human body, especially in muscle, cartilage, bone, liver, kidney, nerves, skin and lungs. In addition to its insulin-like effects, IGF-1 also regulates cell growth and development in nerve cells.

"This is the first realistic way for a drug-like molecule injected into the bloodstream to relieve Rett syndrome symptoms," said Whitehead member Rudolf Jaenisch, whose lab participated in the research.

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>