Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new target for cancer drug development

18.06.2013
Researchers believe the 'undruggable' may be druggable

Harvard Stem Cell Institute (HSCI) researchers have identified in the most aggressive forms of cancer a gene known to regulate embryonic stem cell self-renewal, beginning a creative search for a drug that can block its activity.

The gene, SALL4, gives stem cells their ability to continue dividing as stem cells rather than becoming mature cells. Typically, cells only express SALL4 during embryonic development, but the gene is re-expressed in nearly all cases of acute myeloid leukemia and 10 to 30 percent of liver, lung, gastric, ovarian, endometrial, and breast cancers, strongly suggesting it plays a role in tumor formation.

In work published in the New England Journal of Medicine, two HSCI-affiliated labs — one in Singapore and the other in Boston — show that knocking out the SALL4 gene in mouse liver tumors, or interfering with the activity of its protein product with a small inhibitor, treats the cancer.

"Our paper is about liver cancer, but it is likely true about lung cancer, breast cancer, ovarian cancer, many, many cancers," said HSCI Blood Diseases Program leader Daniel Tenen, who also heads a laboratory at the Cancer Science Institute of Singapore (CSI Singapore). "SALL4 is a marker, so if we had a small molecule drug blocking SALL4 function, we could also predict which patients would be responsive."

Studying the therapeutic potential of a transcription factor is unusual in the field of cancer research. Transcription factors are typically avoided because of the difficulty of developing drugs that safely interfere with genetic targets. Most cancer researchers focus their attention on kinases.

The HSCI researchers' inquiry into the basic biology of the SALL4 gene, however, revealed another way to interfere with its activity in cancer cells. The gene's protein product is responsible for turning off a tumor-suppressor gene, causing the cell to divide uncontrollably. Using this knowledge, the researchers demonstrated that targeting the SALL4 protein with druglike molecules could halt tumor growth. "The pharmaceutical companies decided that if it is not a kinase and it is not a cell surface molecule, then it is 'undruggable,' " Tenen said. "To me, if you say anything is 'undoable,' you are limiting yourself as a biomedical scientist."

Earlier this year, Tenen's co-author, HSCI-affiliated faculty member Li Chai, a Harvard Medical School assistant professor of pathology at Brigham and Women's Hospital, published a paper in the journal Blood, reporting that a SALL4 inhibitor has similar treatment potential in leukemia cells.

Chai took blood samples from patients with acute myeloid leukemia, treated the leukemic cells with the inhibitor that interferes with SALL4 protein activity, and then transplanted the blood into mice. The result was a gradual regression of the same cancer in mice.

"I am excited about being on the front line of this new drug development," Chai said. "As a physician-scientist, if I can find a new class of drug that has very low toxicity to normal tissues, my patients can have a better quality of life."

Chai and Tenen are now working with HSCI Executive Committee member Lee Rubin, the Harvard Institute of Chemistry and Cell Biology, and James Bradner of Dana-Farber Cancer Institute, another HSCI-affiliated faculty member, to overcome the technical challenges of drug development and demonstrate the potential of SALL4 interference to treat other forms of cancer.

"I think as academics, we seek to engage drug companies because they can do these types of things better than we can," Tenen said. "But, also as an academic, I want to go after the important biologic targets that are not being sought after by the typical drug company — because if we do not, who will?"

The basic research that explored the biology of SALL4 was financed by a 2007 seed grant from HSCI, with more recent funding provided by a Singapore Translational Research Award from the Singapore National Medical Research Council, and grants from the Singapore Ministry of Education and National Research Foundation, and the National Institutes of Health. Kol Jia Yong, Chong Gao, and Henry Yang, among others, contributed to this work.

B. D. Colen | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>