Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new target for cancer drug development

18.06.2013
Researchers believe the 'undruggable' may be druggable

Harvard Stem Cell Institute (HSCI) researchers have identified in the most aggressive forms of cancer a gene known to regulate embryonic stem cell self-renewal, beginning a creative search for a drug that can block its activity.

The gene, SALL4, gives stem cells their ability to continue dividing as stem cells rather than becoming mature cells. Typically, cells only express SALL4 during embryonic development, but the gene is re-expressed in nearly all cases of acute myeloid leukemia and 10 to 30 percent of liver, lung, gastric, ovarian, endometrial, and breast cancers, strongly suggesting it plays a role in tumor formation.

In work published in the New England Journal of Medicine, two HSCI-affiliated labs — one in Singapore and the other in Boston — show that knocking out the SALL4 gene in mouse liver tumors, or interfering with the activity of its protein product with a small inhibitor, treats the cancer.

"Our paper is about liver cancer, but it is likely true about lung cancer, breast cancer, ovarian cancer, many, many cancers," said HSCI Blood Diseases Program leader Daniel Tenen, who also heads a laboratory at the Cancer Science Institute of Singapore (CSI Singapore). "SALL4 is a marker, so if we had a small molecule drug blocking SALL4 function, we could also predict which patients would be responsive."

Studying the therapeutic potential of a transcription factor is unusual in the field of cancer research. Transcription factors are typically avoided because of the difficulty of developing drugs that safely interfere with genetic targets. Most cancer researchers focus their attention on kinases.

The HSCI researchers' inquiry into the basic biology of the SALL4 gene, however, revealed another way to interfere with its activity in cancer cells. The gene's protein product is responsible for turning off a tumor-suppressor gene, causing the cell to divide uncontrollably. Using this knowledge, the researchers demonstrated that targeting the SALL4 protein with druglike molecules could halt tumor growth. "The pharmaceutical companies decided that if it is not a kinase and it is not a cell surface molecule, then it is 'undruggable,' " Tenen said. "To me, if you say anything is 'undoable,' you are limiting yourself as a biomedical scientist."

Earlier this year, Tenen's co-author, HSCI-affiliated faculty member Li Chai, a Harvard Medical School assistant professor of pathology at Brigham and Women's Hospital, published a paper in the journal Blood, reporting that a SALL4 inhibitor has similar treatment potential in leukemia cells.

Chai took blood samples from patients with acute myeloid leukemia, treated the leukemic cells with the inhibitor that interferes with SALL4 protein activity, and then transplanted the blood into mice. The result was a gradual regression of the same cancer in mice.

"I am excited about being on the front line of this new drug development," Chai said. "As a physician-scientist, if I can find a new class of drug that has very low toxicity to normal tissues, my patients can have a better quality of life."

Chai and Tenen are now working with HSCI Executive Committee member Lee Rubin, the Harvard Institute of Chemistry and Cell Biology, and James Bradner of Dana-Farber Cancer Institute, another HSCI-affiliated faculty member, to overcome the technical challenges of drug development and demonstrate the potential of SALL4 interference to treat other forms of cancer.

"I think as academics, we seek to engage drug companies because they can do these types of things better than we can," Tenen said. "But, also as an academic, I want to go after the important biologic targets that are not being sought after by the typical drug company — because if we do not, who will?"

The basic research that explored the biology of SALL4 was financed by a 2007 seed grant from HSCI, with more recent funding provided by a Singapore Translational Research Award from the Singapore National Medical Research Council, and grants from the Singapore Ministry of Education and National Research Foundation, and the National Institutes of Health. Kol Jia Yong, Chong Gao, and Henry Yang, among others, contributed to this work.

B. D. Colen | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>