Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A step toward controlling Huntington's disease?

24.06.2011
Johns Hopkins researchers identify a potential new way of blocking activity of gene that causes HD

Johns Hopkins researchers have identified a natural mechanism that might one day be used to block the expression of the mutated gene known to cause Huntington’s disease. Their experiments offer not an immediate cure, but a potential new approach to stopping or even preventing the development of this relentless neurodegenerative disorder.

Huntington’s disease is a rare, fatal disorder caused by a mutation in a single gene and marked by progressive brain damage. Symptoms, which typically first appear in midlife, include jerky twitch-like movements, coordination troubles, psychiatric disorders and dementia. Although the gene responsible for Huntington’s was identified in 1993, there is no cure, and there are no treatments are available even to slow its progression.

The disorder is caused by a mutation in the huntingtin gene (HTT). The mutation occurs when a section of DNA, which normally varies in length from one person to another, is too long. The result is the production of an abnormal and toxic version of the huntingtin protein. The mutation has a second unfortunate effect, the Johns Hopkins researchers discovered — it reduces a natural braking mechanism that might otherwise keep the amount of toxic huntingtin protein in check and keep the disease from developing.

“The idea of being able to harness the powers of this natural mechanism for the benefit of Huntington’s patients is a totally new way of thinking about therapy for the disease,” says Russell L. Margolis, M.D., a professor of psychiatry and behavioral sciences at the Johns Hopkins University School of Medicine and leader of the team publishing results of the study online in the journal Human Molecular Genetics.

Currently, a leading strategy among Huntington’s disease researchers is to try to suppress the expression of the mutant gene by introducing fragments of DNA meant to bind with and sabotage the ability of the gene to make the damaging protein. The goal of this approach is to prevent the mutant HTT from being expressed in the brain and potentially slow, if not stop, the disease’s march. Although cell and animal models have shown promise, Margolis and other researchers worry that getting just the right amount of DNA into the right portions of the brain may be a difficult or risky task, likely involving injections into cerebral spinal fluid or the brain itself. The feasibility of this approach remains unknown, he adds.

The new study suggests an alternative focus — manipulating the newly identified natural “brake” with a drug so that more of the brake is made, which can then specifically stop or slow production of the huntingtin protein. “Whether it’s possible to do this and do it safely remains to be seen,” Margolis says, “but this gives us another approach to explore.”

On the strand of DNA opposite the huntingtin gene, the researchers found another gene, which they named huntingtin antisense. This gene also includes the Huntington’s disease mutation. In normal brain tissue and in cells growing in the laboratory without the Huntington’s disease mutation, Margolis and his team determined that huntingtin antisense acts to inhibit the amount of huntingtin gene that is expressed. But in brain tissue and cells with the Huntington’s disease mutation, there is less huntingtin antisense gene expressed, so the biochemical foot is essentially taken off the brake, leaving a toxic amount of huntingtin protein. Reapplying the brake, by experimentally altering cells grown in culture so that they express a large amount of huntingtin antisense, decreased the amount of the toxic huntingtin protein.

Huntington’s disease was first described in the medical literature in 1872, but it wasn’t until 1993 that the gene mutation was discovered “with hopes that the discovery would quickly lead to treatment,” Margolis says. But the disease has proven unexpectedly complicated, with dozens of different pathways implicated as potential causes of cell damage and death, he adds.

People with a single copy of the mutated gene will get Huntington’s disease, which afflicts roughly 30,000 people in the United States. “It is a terrible disease in which family members can find out what’s coming and are just waiting for the symptoms to present themselves,” Margolis says. “We need to find ways to help them.”

This study was funded by the National Institutes of Health.

Other Hopkins researchers involved in the study include Daniel W. Chung, M.A.; Dobrila D. Rudnicki , Ph.D.; and Lan Yu, Ph.D.

For more information:

http://www.hopkinsmedicine.org/psychiatry/specialty_areas/huntingtons_disease/

Stephanie Desmon | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>