Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A step toward controlling Huntington's disease?

24.06.2011
Johns Hopkins researchers identify a potential new way of blocking activity of gene that causes HD

Johns Hopkins researchers have identified a natural mechanism that might one day be used to block the expression of the mutated gene known to cause Huntington’s disease. Their experiments offer not an immediate cure, but a potential new approach to stopping or even preventing the development of this relentless neurodegenerative disorder.

Huntington’s disease is a rare, fatal disorder caused by a mutation in a single gene and marked by progressive brain damage. Symptoms, which typically first appear in midlife, include jerky twitch-like movements, coordination troubles, psychiatric disorders and dementia. Although the gene responsible for Huntington’s was identified in 1993, there is no cure, and there are no treatments are available even to slow its progression.

The disorder is caused by a mutation in the huntingtin gene (HTT). The mutation occurs when a section of DNA, which normally varies in length from one person to another, is too long. The result is the production of an abnormal and toxic version of the huntingtin protein. The mutation has a second unfortunate effect, the Johns Hopkins researchers discovered — it reduces a natural braking mechanism that might otherwise keep the amount of toxic huntingtin protein in check and keep the disease from developing.

“The idea of being able to harness the powers of this natural mechanism for the benefit of Huntington’s patients is a totally new way of thinking about therapy for the disease,” says Russell L. Margolis, M.D., a professor of psychiatry and behavioral sciences at the Johns Hopkins University School of Medicine and leader of the team publishing results of the study online in the journal Human Molecular Genetics.

Currently, a leading strategy among Huntington’s disease researchers is to try to suppress the expression of the mutant gene by introducing fragments of DNA meant to bind with and sabotage the ability of the gene to make the damaging protein. The goal of this approach is to prevent the mutant HTT from being expressed in the brain and potentially slow, if not stop, the disease’s march. Although cell and animal models have shown promise, Margolis and other researchers worry that getting just the right amount of DNA into the right portions of the brain may be a difficult or risky task, likely involving injections into cerebral spinal fluid or the brain itself. The feasibility of this approach remains unknown, he adds.

The new study suggests an alternative focus — manipulating the newly identified natural “brake” with a drug so that more of the brake is made, which can then specifically stop or slow production of the huntingtin protein. “Whether it’s possible to do this and do it safely remains to be seen,” Margolis says, “but this gives us another approach to explore.”

On the strand of DNA opposite the huntingtin gene, the researchers found another gene, which they named huntingtin antisense. This gene also includes the Huntington’s disease mutation. In normal brain tissue and in cells growing in the laboratory without the Huntington’s disease mutation, Margolis and his team determined that huntingtin antisense acts to inhibit the amount of huntingtin gene that is expressed. But in brain tissue and cells with the Huntington’s disease mutation, there is less huntingtin antisense gene expressed, so the biochemical foot is essentially taken off the brake, leaving a toxic amount of huntingtin protein. Reapplying the brake, by experimentally altering cells grown in culture so that they express a large amount of huntingtin antisense, decreased the amount of the toxic huntingtin protein.

Huntington’s disease was first described in the medical literature in 1872, but it wasn’t until 1993 that the gene mutation was discovered “with hopes that the discovery would quickly lead to treatment,” Margolis says. But the disease has proven unexpectedly complicated, with dozens of different pathways implicated as potential causes of cell damage and death, he adds.

People with a single copy of the mutated gene will get Huntington’s disease, which afflicts roughly 30,000 people in the United States. “It is a terrible disease in which family members can find out what’s coming and are just waiting for the symptoms to present themselves,” Margolis says. “We need to find ways to help them.”

This study was funded by the National Institutes of Health.

Other Hopkins researchers involved in the study include Daniel W. Chung, M.A.; Dobrila D. Rudnicki , Ph.D.; and Lan Yu, Ph.D.

For more information:

http://www.hopkinsmedicine.org/psychiatry/specialty_areas/huntingtons_disease/

Stephanie Desmon | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>