Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A slight twist with serious consequences

03.08.2009
Subtle structural changes can markedly affect one protein’s toxic impact, and may help explain the distinctive pathology of Huntington’s disease

Nobody is entirely sure what the huntingtin protein does when it’s operating normally, but the effects of its malfunction are all too clear: increasingly severe neurological deficits, affecting motor activity and memory and ultimately resulting in dementia.

Huntingtin typically contains an internal stretch of repeated glutamine residues, but this number increases—sometimes dramatically—in Huntington’s disease (HD) patients. This is accompanied by a marked structural change, with the protein aggregating into fibrous clumps within the brain known as amyloid deposits. It is unclear, however, what effect these have on neuronal health or the role they play in HD pathology.

In other plaque-forming diseases, such as prion disease and Alzheimer’s, these amyloid aggregates can assume multiple different structures with variable physiological effects. Now, RIKEN Brain Science Institute investigator Motomasa Tanaka and colleagues recently have found that huntingtin amyloids have similar properties1.

Temperature is known to affect protein folding, and initial experiments revealed subtle differences between huntingtin fibrils formed at body temperature versus 4 °C. Both samples were rich in structures known as â-sheets, but the lower temperature amyloids proved more fragile and detergent-sensitive, and exhibited higher affinity for labeling dyes. These distinct conformations could also be ‘amplified’ in cells; when amyloids formed at a particular temperature were introduced into cells expressing huntingtin with disease-specific numbers of repeats, they acted as seeds for the formation of larger aggregates with the same conformation. Surprisingly, the low-temperature aggregates were found to cause significantly higher levels of cell death than those formed at higher temperatures.

Tanaka’s team also found unexpected evidence that huntingtin aggregates isolated from a mouse model of HD assume different conformations depending on the region of the brain in which they formed. For example, amyloids from the striatum resembled low-temperature aggregates, while those isolated from the hippocampus were more similar to aggregates that formed at higher temperatures. These structural characteristics were also reflected in their relative cytotoxicity. Tanaka points out that the striatum is among the brain regions most vulnerable to HD, and suggests that “structural diversity of amyloid may dictate regional specificity of HD.”

These new structural insights help explain why different studies have yielded apparently contradictory findings about the extent of huntingtin fibril toxicity, although further investigation will be needed to determine the basis for this differential folding and the altered pathological impact of this alternate conformation. “Our current priority is to understand how the same polypeptide misfolds into distinct amyloid conformations,” says Tanaka.

Reference

1. Nekooki-Machida, Y., Kurosawa, M., Nukina, N., Ito, K., Oda, T. & Tanaka, M. Distinct conformations of in vitro and in vivo amyloids of huntingtin-exon1 show different cytotoxicity. Proceedings of the National Academy of Sciences USA 106, 9679–9684 (2009).

The corresponding author for this highlight is based at the RIKEN Tanaka Research Unit

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/757/

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>