Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A slight twist with serious consequences

Subtle structural changes can markedly affect one protein’s toxic impact, and may help explain the distinctive pathology of Huntington’s disease

Nobody is entirely sure what the huntingtin protein does when it’s operating normally, but the effects of its malfunction are all too clear: increasingly severe neurological deficits, affecting motor activity and memory and ultimately resulting in dementia.

Huntingtin typically contains an internal stretch of repeated glutamine residues, but this number increases—sometimes dramatically—in Huntington’s disease (HD) patients. This is accompanied by a marked structural change, with the protein aggregating into fibrous clumps within the brain known as amyloid deposits. It is unclear, however, what effect these have on neuronal health or the role they play in HD pathology.

In other plaque-forming diseases, such as prion disease and Alzheimer’s, these amyloid aggregates can assume multiple different structures with variable physiological effects. Now, RIKEN Brain Science Institute investigator Motomasa Tanaka and colleagues recently have found that huntingtin amyloids have similar properties1.

Temperature is known to affect protein folding, and initial experiments revealed subtle differences between huntingtin fibrils formed at body temperature versus 4 °C. Both samples were rich in structures known as â-sheets, but the lower temperature amyloids proved more fragile and detergent-sensitive, and exhibited higher affinity for labeling dyes. These distinct conformations could also be ‘amplified’ in cells; when amyloids formed at a particular temperature were introduced into cells expressing huntingtin with disease-specific numbers of repeats, they acted as seeds for the formation of larger aggregates with the same conformation. Surprisingly, the low-temperature aggregates were found to cause significantly higher levels of cell death than those formed at higher temperatures.

Tanaka’s team also found unexpected evidence that huntingtin aggregates isolated from a mouse model of HD assume different conformations depending on the region of the brain in which they formed. For example, amyloids from the striatum resembled low-temperature aggregates, while those isolated from the hippocampus were more similar to aggregates that formed at higher temperatures. These structural characteristics were also reflected in their relative cytotoxicity. Tanaka points out that the striatum is among the brain regions most vulnerable to HD, and suggests that “structural diversity of amyloid may dictate regional specificity of HD.”

These new structural insights help explain why different studies have yielded apparently contradictory findings about the extent of huntingtin fibril toxicity, although further investigation will be needed to determine the basis for this differential folding and the altered pathological impact of this alternate conformation. “Our current priority is to understand how the same polypeptide misfolds into distinct amyloid conformations,” says Tanaka.


1. Nekooki-Machida, Y., Kurosawa, M., Nukina, N., Ito, K., Oda, T. & Tanaka, M. Distinct conformations of in vitro and in vivo amyloids of huntingtin-exon1 show different cytotoxicity. Proceedings of the National Academy of Sciences USA 106, 9679–9684 (2009).

The corresponding author for this highlight is based at the RIKEN Tanaka Research Unit

Saeko Okada | Research asia research news
Further information:

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>