Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A slight twist with serious consequences

03.08.2009
Subtle structural changes can markedly affect one protein’s toxic impact, and may help explain the distinctive pathology of Huntington’s disease

Nobody is entirely sure what the huntingtin protein does when it’s operating normally, but the effects of its malfunction are all too clear: increasingly severe neurological deficits, affecting motor activity and memory and ultimately resulting in dementia.

Huntingtin typically contains an internal stretch of repeated glutamine residues, but this number increases—sometimes dramatically—in Huntington’s disease (HD) patients. This is accompanied by a marked structural change, with the protein aggregating into fibrous clumps within the brain known as amyloid deposits. It is unclear, however, what effect these have on neuronal health or the role they play in HD pathology.

In other plaque-forming diseases, such as prion disease and Alzheimer’s, these amyloid aggregates can assume multiple different structures with variable physiological effects. Now, RIKEN Brain Science Institute investigator Motomasa Tanaka and colleagues recently have found that huntingtin amyloids have similar properties1.

Temperature is known to affect protein folding, and initial experiments revealed subtle differences between huntingtin fibrils formed at body temperature versus 4 °C. Both samples were rich in structures known as â-sheets, but the lower temperature amyloids proved more fragile and detergent-sensitive, and exhibited higher affinity for labeling dyes. These distinct conformations could also be ‘amplified’ in cells; when amyloids formed at a particular temperature were introduced into cells expressing huntingtin with disease-specific numbers of repeats, they acted as seeds for the formation of larger aggregates with the same conformation. Surprisingly, the low-temperature aggregates were found to cause significantly higher levels of cell death than those formed at higher temperatures.

Tanaka’s team also found unexpected evidence that huntingtin aggregates isolated from a mouse model of HD assume different conformations depending on the region of the brain in which they formed. For example, amyloids from the striatum resembled low-temperature aggregates, while those isolated from the hippocampus were more similar to aggregates that formed at higher temperatures. These structural characteristics were also reflected in their relative cytotoxicity. Tanaka points out that the striatum is among the brain regions most vulnerable to HD, and suggests that “structural diversity of amyloid may dictate regional specificity of HD.”

These new structural insights help explain why different studies have yielded apparently contradictory findings about the extent of huntingtin fibril toxicity, although further investigation will be needed to determine the basis for this differential folding and the altered pathological impact of this alternate conformation. “Our current priority is to understand how the same polypeptide misfolds into distinct amyloid conformations,” says Tanaka.

Reference

1. Nekooki-Machida, Y., Kurosawa, M., Nukina, N., Ito, K., Oda, T. & Tanaka, M. Distinct conformations of in vitro and in vivo amyloids of huntingtin-exon1 show different cytotoxicity. Proceedings of the National Academy of Sciences USA 106, 9679–9684 (2009).

The corresponding author for this highlight is based at the RIKEN Tanaka Research Unit

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/757/

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>