Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A single gene separates aggressive and non-aggressive lymphatic system cancer

30.06.2014

For a rare form of cancer called thymoma, researchers have discovered a single gene defining the difference between a fast-growing tumor requiring aggressive treatment and a slow-growing tumor that doesn't require extensive therapy.

Thymoma is a cancer derived from the epithelial cells of the thymus, an organ critical to the lymphatic system where T-cells, or so-called "killer cells," mature. Very little is known about the role of the gene mutation GTF2l in human tumors, but scientists from Georgetown Lombardi Comprehensive Cancer Center and the National Cancer Institute say almost all indolent (slow growing and non-aggressive) forms of thymoma they tested have the mutation. They report their finding in the ?? issue of Nature Genetics.

"Indolent thymomas seldom become aggressive, so the discovery that a single gene can identify tumors that do not need aggressive care is an important development for our patients," says the study's senior investigator, Giuseppe Giaccone, MD, PhD, associate director for clinical research at Georgetown Lombardi.

In addition to the clinical implications, the study is important because "it is highly unusual to find a single mutated gene that can define a class of tumors," he said. "Usually a substantial number of genes are involved. In fact, we also found that the more aggressive thymomas express well-known cancer genes found in other tumors — which might give us clues about novel treatment of these cancers."

The thymus is located in the chest behind the breastbone. Thymoma and a second type of cancer of the thymus called thymic carcinoma are rare. According to the National Cancer Institute, these cancers counted together make up for only .2 to 1.5 percent of all cancers— one case occurs in about every 700,000 individuals.

Most of the diagnosed patients have surgery, but, depending on the presumed aggressiveness of the cancer, some patients will have radiation and/or chemotherapy in addition or instead of surgery. "The use of these treatments in thymomas is controversial, because we know some patients don't need aggressive therapy, but until now, there's not been a clear way to know who those patients are," Giaccone says.

###

Co-authors include: In-Kyu Kim, Kang-Seo Park, Sivanesan Dakshanamurthy and Yisong Wang from Georgetown Lombardi Comprehensive Cancer Center; Iacopo Petrini, Paul S Meltzer, James Gao, Robert L. Walker, Marbin Pineda, Yuelin J Zhu, Christopher Lau, Keith J. Killian, Sven Bilke, Donna Voeller and Jaime Rodriguez-Canales from the National Cancer Institute; Marco Lucchi and Gabriella Fontanini from Pisa University Hospital, Pisa, Italy; Paolo A Zucali from Humanitas Clinical and Research Center, Milan, Italy; and Fiorella Calabrese, Adolfo Favaretto and Federico Rea from Padua University Hospital, Padua, Italy.

The study was supported by the National Cancer Institute intramural research program and Georgetown Lombardi Comprehensive Cancer Center. The National Cancer Institute has filed a patent application on the technology described in this paper. Giaccone, Wang and Petrini are inventors on the patent.

About Georgetown Lombardi Comprehensive Cancer Center

Georgetown Lombardi Comprehensive Cancer Center, part of Georgetown University Medical Center and MedStar Georgetown University Hospital, seeks to improve the diagnosis, treatment, and prevention of cancer through innovative basic and clinical research, patient care, community education and outreach, and the training of cancer specialists of the future. Georgetown Lombardi is one of only 41 comprehensive cancer centers in the nation, as designated by the National Cancer Institute (grant #P30 CA051008), and the only one in the Washington, DC area. For more information, go to http://lombardi.georgetown.edu.

About Georgetown University Medical Center

Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through MedStar Health). GUMC's mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis – or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing & Health Studies, both nationally ranked; Georgetown Lombardi Comprehensive Cancer Center, designated as a comprehensive cancer center by the National Cancer Institute; and the Biomedical Graduate Research Organization (BGRO), which accounts for the majority of externally funded research at GUMC including a Clinical and Translational Science Award from the National Institutes of Health.

Karen Teber | Eurek Alert!

Further reports about: MedStar aggressive lymphatic surgery thymic carcinoma tumors

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>