Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Less of a shock

14.11.2012
A novel electrotherapy greatly reduces the energy needed to shock a heart back into rhythm, potentially making implanted defibrillators more acceptable to patients.

Implantable defibrillators currently on the market apply between 600 and 900 volts to the heart, almost 10 times the voltage from an electric outlet, says Ajit H. Janardhan, MD, PhD, a cardiac electrophysiology fellow at the Washington University’s School of Medicine.

After being shocked, he says, some patients get post-traumatic stress disorder. Patients may even go so far as to ask their physicians to remove the defibrillator, even though they understand that the device has saved their lives.

The huge shocks are not only unbearably painful, they damage the heart muscle and have been shown in many studies to be associated with increased mortality.

In an advance online edition of the Journal of American College of Cardiology, Janardhan and Igor Efimov, PhD, professor of biomedical engineering in the School of Engineering & Applied Science, report on a low-energy defibrillation scheme that significantly reduces the energy needed to re-establish a normal rhythm in the heart’s main chambers.

They hope this electrotherapy will be much less painful than shocks from existing implantable defibrillators, and may even fall beneath the threshold at which patients begin to perceive pain.

The team has just received a National Institutes of Health grant to develop a prototype low-energy defibrillator for humans and plan to begin clinical trials of the device shortly.

A cardiac rhythm monitor, a Band-Aid like patch worn on the chest for a day or two to help diagnose cardiac problems, has picked up five rapid contractions of the heart’s ventricles (light blue area at bottom). In this instance the heart spontaneously re-established a normal rhythm but ventricular tachycardia, as this condition is called, can lead to sudden cardiac death.

The lub-dub of the heartbeat begins with an electrical impulse generated by the sinoatrial node, a group of cells on the wall of the right atrium that is the heart’s natural pacemaker.

Spreading through conductive pathways in the heart, the electrical signal first causes the two upper chambers of the heart (the atria) to contract, and then, a split second later, the two lower chambers (the ventricles), coordinated motions that efficiently pump blood to the rest of the body.

The synchronized squeezing of a normal heartbeat is called sinus rhythm, after the node that triggers it.

The rhythm can go wrong in many different ways, but the real killer is ventricular tachycardia. Ventricular tachycardia is an abnormal heart rhythm that starts in the ventricles rather than from the sinoatrial node, and that causes the heart to beat at a rate too fast (tachy is Greek for rapid or fast) to efficiently pump blood to the rest of the body.

Moreover, the rapid heartbeat can degenerate precipitously into ventricular fibrillation, or the loss of all rhythm, says Efimov. During ventricular fibrillation the uncoordinated contraction of heart muscle prevents the heart from pumping blood at all, and without immediate intervention, death quickly follows.

Most people who develop ventricular tachycardia and ventricular fibrillation outside the hospital die, says Janardhan, but studies show that if we implant a defibrillator in patients with a weak heart that does not pump as strongly as it should, we can significantly reduce mortality.

Restarting the rhythm
There are really only three therapies for ventricular tachycardia, Efimov says. One is drugs that reduce the likelihood of tachycardia, but drugs are often ineffective.

The second is ablation, or the deliberate creation of nonconductive scar tissue within the heart that blocks abnormal conductive patterns and redirects electrical activity to more normal pathways.

The major problem with ablation, says Efimov, is recurrence. It’s a temporary measure, not a cure. Patients typically need additional treatment within five years.

The third therapy is an implantable cardioverter defibrillator, or ICD. These devices are placed beneath the skin in the chest and monitor the rate and rhythm of the heart. If they detect ventricular tachycardia, they try to break the rhythm by pacing the heart at a rate faster than its intrinsic rate, a strategy anti-tachycardia pacing.

Anti-tachycardia pacing is very low energy, so low that patients may not even sense it. But it is relatively ineffective when the heart is beating 200 time per minute or faster. At these higher rates, the ICS zaps the heart with a strong electrical shock that resets it and, with luck, allows the pacemaker node to restart it with a normal rhythm.

A novel electrotherapy

The scientists knew from earlier experiments that the voltage needed to shut down ventricular tachycardia depended on the timing of the shock. This led them to ask whether a sequence of multiple, closely timed low-voltage shocks might be more effective than a single high-voltage shock, and be less sensitive to timing.

Indeed it turned out that if they shocked the heart multiple times they could reduce the peak shock amplitude from well over 200 volts to 20 volts, timing no longer mattered, and the therapy worked even if the ventricular tachycardia was very rapid.

Although this electrotherapy involves multiple shocks, the total energy it delivers is still lower than that of a single large shock, roughly 80 times lower.

Why do multiple shocks work better? Arrhythmias generate electrical wave vortices — little electrical tornadoes in the heart — and it is these vortices, or re-entrant circuits, that make the heart beat too fast and prevent it from pumping properly.

But immediately after it contracts, heart muscle goes through a refractory, or unresponsive, period during which it does not respond to electrical stimulation. The multiple shocks may do a better job of extinguishing the re-entrant circuits by creating an area of unresponsive muscle into which the re-entrant wavefront –the electrical tornado – crashes, the scientists suggest.

Relocating the Electrodes

Defibrillators now on the market apply shocks between the right ventricle (RV) and an “active can” located above the chest wall, below the collarbone. The shocks are painful in part because they pass through the chest wall muscle and sensory nerves.

The investigators found they could reduce peak shock voltages by an additional 50 percent if they applied shocks between the RV and coronary sinus (CS), a vessel that collects deoxygenated blood from the heart muscle, rather than through the chest wall. Less energy was required because the shocks were confined to the heart itself, and for the same reason they were also less painful.

In an earlier paper, Efimov’s student Wenwen Li, PhD, now at St. Jude Medical, had reported on a similar strategy for restoring the rhythm of the atria, the two upper chambers of the heart, for a less serious but more common rhythm abnormality.

The team has already developed the first low-energy atrial defibrillator, which will soon be entering clinical trials. They hope for similarly rapid progress with the ventricular defibrillator.

“We think this technology can and will be implemented soon,” says Janardhan. “There’s a lot of cardiac research that may pan out 20 or 30 years from now,” he says, “but as a physician I want something that can help my patients now.“

Diana Lutz | EurekAlert!
Further information:
http://news.wustl.edu/news/Pages/24486.aspx
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

nachricht Chronic stress induces fatal organ dysfunctions via a new neural circuit
21.08.2017 | Hokkaido University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Heating quantum matter: A novel view on topology

22.08.2017 | Physics and Astronomy

Stretchable biofuel cells extract energy from sweat to power wearable devices

22.08.2017 | Power and Electrical Engineering

New technique to treating mitral valve diseases: First patient data

22.08.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>