Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A rush of blood to the head -- anger increases blood flow

06.07.2009
Mental stress causes carotid artery dilation and increases brain blood flow. A series of ultrasound experiments, described in BioMed Central's open access journal Cardiovascular Ultrasound, also found that this dilatory reflex was absent in people with high blood pressure.

Tasneem Naqvi and Hahn Hyuhn from the University of Southern California and Cedars-Sinai Medical Center evaluated carotid artery reactivity and brain blood flow in response to mental stress in 10 healthy young volunteers (aged between 19 and 27 years), 20 older healthy volunteers (aged 38 to 60 years) and in 28 patients with essential hypertension (aged 38 to 64 years).

They found that in healthy subjects, mental stress caused vasodilation. This was accompanied by a net increase in brain blood flow. In hypertensive subjects, mental stress produced no vasodilation and no significant change in brain blood flow.

During the experiments, the volunteers were set a series of tasks designed to provoke mental stress, including reading, arithmetic and anger recall tests. The researchers used ultrasound imaging to measure the effects of this activity on the carotid artery and an artery within the brain, while also measuring blood pressure and heart rate.

According to Naqvi, "Inappropriate vasoconstriction, or lack of dilation in response to mental stress in stable coronary heart disease, contributes to the genesis of myocardial ischemia and confers an increased risk in patients with coronary artery disease. It will be interesting to see whether the lack of mental stress induced dilation we found defines subjects at increased risk of future cerebral events". Lack of required blood flow increase to the brain during mental activities may potentially affect cognition and cerebral performance during complex cerebral tasks.

1. Cerebrovascular mental stress reactivity is impaired in hypertension
Tasneem Z Naqvi and Hahn K Hyuhn
Cardiovascular Ultrasound (in press)
2. Cardiovascular Ultrasound is an Open Access, peer-reviewed, online journal covering clinical, technological, experimental, biological, and molecular aspects of ultrasound applications in cardiovascular physiology and disease. Cardiovascular Ultrasound aims to provide a suitable platform for the most current, clinically and biologically relevant, and high quality research in the field of ultrasound of the heart and vessels. The journal publishes peer-reviewed original research, authoritative reviews, case reports on challenging and/or unusual diagnostic aspects, and expert opinions on new techniques and technologies.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Graeme Baldwin | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>