Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A role for glia in the progression of Rett Syndrome

30.06.2011
A paper published online today in Nature reveals that glia play a key role in preventing the progression of the most prominent Rett Syndrome symptoms displayed by mouse models of the disease: lethality, irregular breathing and apneas, hypoactivity and decreased dendritic complexity. The discovery, funded in part by the Rett Syndrome Research Trust (RSRT) was led by Gail Mandel, Ph.D., an investigator of the Howard Hughes Medical Institute at Oregon Health and Science University.

Rett Syndrome, the most physically disabling of the autism spectrum disorders, is caused by mutations in the methyl CpG-binding protein (MeCP2). Rett Syndrome strikes little girls almost exclusively, with first symptoms usually appearing before the age of 18 months.

These children lose speech, motor control and functional hand use, and many suffer from seizures, orthopedic and severe digestive problems, breathing and other autonomic impairments. Most live into adulthood, and require total, round- the- clock care. There are several mouse models for RTT in which MeCP2 has been deleted: these mice accurately recapitulate many of the human symptoms.

In a seminal 2007 Science paper, Adrian Bird and colleagues from the University of Edinburgh showed that global re-expression of MeCP2 in mouse models dramatically reversed Rett symptoms, even in very late-stage disease. This led to the idea that the damage to neurons in RTT was reversible.

In 2009, Mandel and collaborator Nurit Ballas (Stony Brook University) showed that the MeCP2 protein was present in all types of glia. Glial cells are comprised of astrocytes, oligodendrocytes and microglia. Glia support and interact with neurons in innumerable ways, from providing the structural underpinnings and guidance of axons and dendrites (the neuronal processes that carry information), to creating protective insulation for axons, to providing energy substrates necessary for neuronal function. Until the reports of MeCP2’s presence in glia, Rett Syndrome was thought to be caused exclusively by MeCP2 deficiencies in neurons.

Mandel and Ballas and colleagues now show that in a mouse model of Rett Syndrome, re-expression of MeCP2 solely in astrocytes, in male mice at 4 weeks of age and in female mice between the ages of 5 to 7 months, rescues the lifespan, breathing, anxiety, and locomotor activities associated with the global knockout mice.

Mandel states: “The RTT plot now thickens…we need to think about contributions from multiple cell types to this disease. The idea that neurons and glia might serve different roles in Rett Syndrome, in initiation and progression of symptoms, is reminiscent of the situation in another neurological disorder, an inherited form of ALS. Thus, a role for glia may turn out to be a more common theme in many neurological diseases. It will be important to determine if other glial types play roles in RTT, and to further investigate how normal neurons and astrocytes interact, a currently active but controversial area”.

First author Daniel Lioy (Howard Hughes Medical Institute, OHSU) comments, “Future studies will focus on trying to identify the key molecules in astrocytes that might mediate the rescue. These molecules may provide new avenues for targeted pharmacological intervention for Rett.”

“This new and unexpected result by the Mandel lab reveals important clues regarding the function of MeCP2 and how its absence causes devastation. The Rett Syndrome Research Trust will continue to support high-level exploration with the conviction that understanding how this protein works will open new doors to treatment approaches,” said Monica Coenraads, Executive Director of RSRT and mother to a daughter with Rett Syndrome.

About the Rett Syndrome Research Trust
The Rett Syndrome Research Trust is the premier organization devoted exclusively to promoting international research on Rett Syndrome and related MECP2 disorders. Our goal is clear: to heal children and adults who will otherwise suffer from this disorder for the rest of their lives. With our experience and tight focus, RSRT has an unparalleled knowledge base and extensive networking abilities in the world of high-level research. This puts RSRT in a unique position to stimulate, evaluate, support and monitor ambitious and novel scientific projects. To learn more about the Trust, please visit www.ReverseRett.org
Media Contact:
Monica Coenraads
Executive Director, RSRT
monica@rsrt.org
203.445.0041

Monica Coenraads | EurekAlert!
Further information:
http://www.ReverseRett.org

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>