Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A revolutionary new model for Alzheimer's disease

23.02.2009
Discovery of brain protein may be clue to treatment

A study from the Buck Institute for Age Research offers a revolutionary new model for Alzheimer’s disease (AD), a devastating neurodegenerative disorder which afflicts 24 million people worldwide.

In an effort to unravel the normal function of a protein implicated in AD, scientists in California and France have discovered a naturally occurring protein that provides a new therapeutic target for the disease.

The finding upsets the current theory that AD is a disease of toxicity stemming from damage caused by sticky plaques that collect in the brain – this research points to the condition as a disorder involving an imbalance in signaling between neurons. The study appears online in the Nature publication Cell Death and Differentiation.

One of the mysteries of AD has been the normal function of the amyloid precursor protein (APP) which are concentrated at the points where neurons connect. Even though the sticky amyloid plaques which have been viewed as a hallmark sign of AD result from APP, it seems unlikely that APP exists simply to cause Alzheimer’s disease. In their study, scientists from the Buck Institute and the CNRS (Centre Nationale de la Recherche Scientifique) show that APP binds to netrin-1, a protein that helps to guide nerves and their connections in the brain, as well as helping nerve cells to survive. When netrin-1 was given to mice that have a gene for Alzheimer’s disease their symptoms were reversed, and the sticky amyloid was reduced. These results suggest that the long-held belief that AD is caused by brain cell damage inflicted by the amyloid plaques may be wrong; instead, it is beginning to appear that the disease stems from an imbalance between the normal making and breaking of connections in the brain, with netrin-1 supporting the connections and the amyloid breaking the connections -- both by binding to APP and activating normal cell programs.

Not only did the netrin-1 binding to APP keep the nerve cells alive and connected, but it also shut down the production of the amyloid, all of which makes it an interesting potential therapeutic.

“I think we’re going to see an explosion in the next five years involving the dissection of these signaling pathways whose imbalance leads to Alzheimer’s disease,” said Buck Institute Faculty Member Dale Bredesen, MD, who led the California half of the French-Californian collaborative research. “We now believe that APP is part of a ‘plasticity module’ that functions in normal memory and forgetting, and that netrin-1 gives us an important starting point to restore the normal balance.”

“We believe that Alzheimer’s disease is somewhat analogous to cancer, which results from an imbalance between the normal processes that support cell survival and those that cause cell turnover,” said Patrick Mehlen, PhD, Director of the Apoptosis, Cancer and Development CNRS Laboratory at the University of Lyon and co-senior author of the study. “Our hope is that this research will lead to therapeutics that will be used to address this imbalance much earlier in the disease process.”

Research is underway to develop a drug based on the findings. The Buck Institute and the CNRS in Lyon are partnering with Neurobiological Technologies Inc., (NASDAQ: NTII) to bring the discovery from the laboratory to clinical trials.

Other researchers involved in the study include first author Filipe Calheiros Lourenço, of the University of Lyon, along with co-workers Joanna Fombonne, Véronique Corset and Fabien Llambi; Verónica Galvan of the Buck Institute, and Ulrike Müller of the University of Heidelberg. The work was supported by the Agence Nationale de la Recherche, the CNRS (Centre Nationale de la Recherche Scientifique), the National Institutes of Health, the Joseph Drown Foundation, the John Douglas French Foundation, and the Alzheimer’s Association.

About the Buck Institute:

The Buck Institute is the only freestanding institute in the United States that is devoted solely to basic research on aging and age-associated disease. The Institute is an independent nonprofit organization dedicated to extending the healthspan, the healthy years of each individual’s life. The National Institute on Aging designated the Buck a “Nathan Shock Center of Excellence in the Biology of Aging,” one of just five centers in the country. Buck Institute scientists work in an innovative, interdisciplinary setting to understand the mechanisms of aging and to discover new ways of detecting, preventing and treating conditions such as Alzheimer’s and Parkinson’s disease, cancer, diabetes and stroke. Collaborative research at the Institute is supported by new developments in genomics, proteomics and bioinformatics technology.

Kris Rebillot | EurekAlert!
Further information:
http://www.buckinstitute.org

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>