Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A promising target to treat asthma

25.07.2013
University of Iowa team finds enzyme in airway lining cells could hold key for asthma sufferers

An enzyme known for its role in heart disease may well be a promising target to treat asthma. Researchers from the University of Iowa have found that the enzyme, called CaMKII, is linked to the harmful effects of oxidation in the respiratory tract, triggering asthmatic symptoms. The finding could lead to the development of a drug that would target the CaMKII enzyme, the researchers say.

Asthma affects billions of people worldwide. In the United States, 8.5 percent of the population has asthma, which causes 3,000 deaths and more than $56 billion annually in medical and lost work costs, according to the federal Centers for Disease Control and Prevention. Despite its toll on health and productivity, treatment options remain confined to steroids, which have harmful, even life-threatening, side effects for those with severe cases.

Current treatments don’t work well, noted Mark Anderson, professor and chair in internal medicine at the UI and a co-corresponding author on the paper, published July 24 in the journal Science Translational Medicine.

“It’s a kind of an epidemic without a clear, therapeutic option," Anderson says. "The take-home message is that inhibiting CaMKII appears to be an effective anti-oxidant strategy for treating allergic asthma."

Anderson and co-corresponding author Isabella Grumbach knew from previous work that the CaMKII enzyme played a role in the oxidation of heart muscle cells, which can lead to heart disease and heart attacks. The scientists surmised the same enzyme may affect oxidation in the respiratory system as well.

The team first tested the enzyme in airway muscle cells, but to little effect. They then tried to block the enzyme in the airway lining (epithelial) cells. They noticed that mice with the blocked enzyme had less oxidized CaMKII, no airway muscle constriction and no asthma symptoms. Similarly, mice without the blocked enzyme showed high “oxidative stress,” meaning lots of oxidized enzymes in the epithelial cells, a constricted airway and asthma symptoms.

“[The study] suggests that these airway lining cells are really important for asthma, and they’re important because of the oxidative properties of CaMKII,” says Anderson, whose primary appointment is in the Carver College of Medicine. “This is completely new and could meet a hunger for new asthma treatments. Here may be a new pathway to treat asthma.”

"Ten years ago, not much was known about what CaMKII does outside of nerve cells and muscle cells in the heart," says Grumbach, associate professor in internal medicine at the UI. "My lab has worked on investigating its function mainly in blood vessels with the long-term goal to use blockers of CaMKII to treat common diseases. We are constantly finding that CaMKII is interesting and important."

The researchers also took tissue samples from the airways of patients with asthma. True to their hypothesis, they found more oxidized enzymes in those patients than in healthy individuals. Taking a step further, the team found that mild asthma patients who inhaled an allergen had a spike in oxidized CaMKII in the epithelial cells just a day later.

“We have this very compelling association,” Anderson says, adding that more studies in patients are needed to validate the approach.

The researchers also plan to investigate inhaled drugs that could block the oxidation of theCaMKII enzyme, for treating heart disease and asthma. Anderson has a patent and is involved in a company, Allosteros Therapeutics, which is seeking to develop such a drug.

The paper’s first author is Philip Sanders, a former postdoctoral student in Grumbach's lab, helped design the study and analyzed much of the data. Contributing authors from the UI include Olha Koval, Omar Jaffer, Anand Prasad, Thomas Businga, Jason Scott, Elizabeth Luczak, David Dickey, Francis Miller, Jr., Megan Dibbern, Joseph Zabner, Joel Kline, Chantal Allamargot, Alicia Olivier, David Meyerholz, Brett Wagner, Garry Buettner and Marshall Pope. Other contributing authors are Patrick Hayden from MatTek Corporation; Alfred Robison from the Mount Sinai School of Medicine in New York; Danny Winder, Timothy Blackwell and Ryszard Dworski from Vanderbilt University; Hans Michael Haitchi, David Sammut and Peter Howarth from the University of Southampton, United Kingdom; and Peter Mohler from Ohio State University.

The National Institutes of Health (grant numbers: K23 HL080030 02 and M01 RR-00095), the American Asthma Foundation and the Sandler Program for Asthma Research funded the work.

Contacts
Mark Anderson, Internal Medicine, 319- 356-2745
Richard Lewis, University Communication and Marketing, 319-384-0012

Richard Lewis | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>