Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new approach to Huntington's disease?

31.03.2014

UCLA study discovers potassium boost improves walking in mouse model

Tweaking a specific cell type's ability to absorb potassium in the brain improved walking and prolonged survival in a mouse model of Huntington's disease, reports a UCLA study published March 30 in the online edition of Nature Neuroscience. The discovery could point to new drug targets for treating the devastating disease, which strikes one in every 20,000 Americans.

Huntington's disease is passed from parent to child through a mutation in the huntingtin gene. By killing brain cells called neurons, the progressive disorder gradually deprives patients of their ability to walk, speak, swallow, breathe and think clearly. No cure exists, and patients with aggressive cases can die in as little as 10 years.

The laboratories of Baljit Khakh, a professor of physiology and neurobiology, and Michael Sofroniew, a professor of neurobiology, teamed up at the David Geffen School of Medicine at UCLA to unravel the role played in Huntington's by astrocytes--large, star-shaped cells found in the brain and spinal cord.

"Astrocytes appear in the brain in equal numbers to neurons, yet haven't been closely studied. They enable neurons to signal each other by maintaining an optimal chemical environment outside the cells," explained Khakh, who, with Sofroniew, is a member of the UCLA Brain Research Institute. "We used two mouse models to explore whether astrocytes behave differently during Huntington's disease."

The first model mimicked aggressive, early-onset of the disorder, while the second imitated a slow-developing version.

Khakh and Sofroniew examined how the huntingtin mutation influenced astrocytes in the brain. In particular, they looked at astrocytes' interaction with a type of neuron that plays a central role in coordinating movement.

One key finding stood out from the data.

In both models, astrocytes with the mutant gene showed a measurable drop in Kir4.1, a protein that allows the astrocyte to take in potassium through the cell membrane. This left too much potassium outside the cell, disrupting the chemical balance and increasing the nearby neurons' excitability–or capacity to fire.

"We suspect that the gene mutation contributes to Huntington's disease by reducing Kir4.1 levels in the astrocytes," said Sofroniew. "This, in turn, reduces the cell's uptake of potassium.

"When excess potassium pools around neurons, they grow oversensitive and fire too easily, disrupting nerve-cell function and ultimately the body's ability to move properly. This may contribute to the jerky motions common to Huntington's disease," he added.

To test their hypothesis, the scientists explored what would happen if they artificially increased Kir4.1 levels inside the astrocytes. In one example, the results proved striking.

"Boosting Kir4.1 in the astrocytes improved the mice's ability to walk properly. We were surprised to see the length and width of the mouse's stride return to more normal levels," said Khakh. "This was an unexpected discovery."

"Our work breaks new ground by showing that disrupting astrocyte function leads to the disruption of neuron function in a mouse model of Huntington's disease," said Sofroniew. "Our findings suggest that therapeutic targets exist for the disorder beyond neurons."

While the results shed important light on one of the mechanisms behind Huntington's disease, the findings also offer more general implications, according to the authors

"We're really excited that astrocytes can potentially be exploited for new drug treatments," said Khakh. "Astrocyte dysfunction also may be involved in other neurological diseases beyond Huntington's."

The UCLA team's next step will be to tease out the mechanism that reduces Kir4.1 levels and illuminate how this alters neuronal networks.

###

The study was supported by the CHDI Foundation, the National Institute of Mental Health and the National Institute of Neurological Disorders and Stroke.

Khakh and Sofroniew's coauthors included Xiaoping Tong, Yan Ao, Guido Faas, Ji Xu, Martin Haustein, Mark Anderson and Istvan Mody from UCLA; and Sinifunanya Nwaobi and Michelle Olsen from the University of Alabama at Birmingham.

Elaine Schmidt | EurekAlert!
Further information:
http://www.ucla.edu

Further reports about: Huntington's Huntington's disease UCLA aggressive astrocyte astrocytes disorder neurons potassium

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>