Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new method will enable the early detection of Parkinson’s disease through handwriting

10.09.2013
The primary tool for diagnosing Parkinson’s is the diagnostic ability of the physician, who can generally identify the clinical symptoms only after the disease has progressed considerably. A new joint study by researchers at the University of Haifa and Rambam Hospital that compared the writing process of 40 sick and healthy subjects suggests an innovative and noninvasive method of diagnosing Parkinson’s at a fairly early stage

Today’s primary tool for diagnosing Parkinson’s disease is the diagnostic ability of the physician, who can generally identify the clinical symptoms only when the disease is at a relatively advanced stage.

A new joint study by researchers at the University of Haifa and Rambam Hospital that compared the handwriting of 40 sick and healthy subjects suggests an innovative and noninvasive method of diagnosing Parkinson’s at a fairly early stage.

“Identifying the changes in handwriting could lead to an early diagnosis of the illness and neurological intervention at a critical moment,” explains Prof. Sara Rosenblum, of the University of Haifa’s Department of Occupational Therapy, who initiated the study.

The methods for diagnosing Parkinson’s today are a physician evaluation or a test called SPECT, which uses radioactive material to image the brain. The latter, however, is no more effective in diagnosing the illness than an expert doctor and it exposes the patient to unnecessary radiation.

Studies from recent years show that there are unique and distinctive differences between the handwriting of patients with Parkinson's disease and that of healthy people. However, most studies that were conducted to date have focused on handwriting focused on motor skills (such as the drawing of spirals) and not on writing that involves cognitive abilities, such as signing a check, copying addresses, etc.

According to Prof. Rosenblum, Parkinson's patients report feeling a change in their cognitive abilities before detecting a change in their motor abilities and therefore a test of cognitive impairment like the one performed in this study could attest to the presence of the disease and offer a way to diagnose it earlier.

This research was conducted in cooperation with Dr. Ilana Schlesinger, head of the Center for Movement Disorders and Parkinson's Disease at Haifa’s Rambam Medical Center and occupational therapists working in the hospital. In the study, the researchers asked the subjects to write their names and gave them addresses to copy, two everyday tasks that require cognitive abilities. Participants were 40 adults with at least 12 years of schooling, half healthy and half known to be in the early stages of Parkinson's disease (before obvious motor signs are visible).

The writing was done on a regular piece of paper that was placed on electronic tablet, using a special pen with pressure-sensitive sensors operated by the pen when it hit the writing surface. A computerized analysis of the results compared a number of parameters: writing form (length, width and height of the letters), time required, and the pressure exerted on the surface while performing the assignment.

Analysis of the results showed significant differences between the patients and the healthy group, and all subjects, except one, had their status correctly diagnosed (97.5% accuracy). The Parkinson’s disease patients wrote smaller letters (“micrograph”), exerted less pressure on the writing surface, and took more time to complete the task. According to Prof. Rosenblum a particularly noticeable difference was the length of time the pen was in the air between the writing of each letter and each word.

“This finding is particularly important because while the patient holds the pen in the air, his mind is planning his next action in the writing process, and the need for more time reflects the subject’s reduced cognitive ability. Changes in handwriting can occur years before a clinical diagnosis and therefore can be an early signal of the approaching disease,” Prof. Rosenblum said.

According to Dr. Schlesinger, validating these findings in a broader study would allow this method to be used for a preliminary diagnosis of the disease in a safe and non-invasive fashion. “This study is a breakthrough toward an objective diagnosis of the disease,” said Dr. Schlesinger, adding, “Publication of the study in the journal of the European Neurological Society aroused great interest at the International Congress of Parkinson's Disease and Movement held last week in Sydney, Australia.”

The researchers note that this diagnostic method has the added benefit of reducing the load on the health system, because the test can be performed by a professional other than a doctor. After the results are in, patients can be referred to a doctor for further treatment and testing if necessary. The researchers are currently using the method in a new experiment, in which they use handwriting analysis to evaluate the degree of Parkinson's patients’ improved functioning after they have brain pacemakers implanted.

For more information:
Polina Petruhin
Office: +972-4-8288722
Mobile: +972-54-3933092
Communications and Media Relations
University of Haifa
ppetruh1@univ.haifa.ac.il

Polina Petruhin | University of Haifa
Further information:
http://www.haifa.ac.il

More articles from Health and Medicine:

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

nachricht ASU scientists develop new, rapid pipeline for antimicrobials
14.12.2017 | Arizona State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>