Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A human respiratory tissue model to assess the toxicity of inhaled chemicals and pollutants

26.03.2015

An extensive analysis shows that MucilAir™ cells maintain normal biochemical processes for at least six months

A 3-dimensional model of human respiratory tissue has been shown to be an effective platform for measuring the impact of chemicals, like those found in cigarette smoke, or other aerosols on the lung.


Schematic representation of the MucilAir™ pseudostratied respiratory epithelium grown on the surface of a porous membrane with culture medium on the basal side and air on the apical side. The goblet cells secrete mucin proteins in a matrix composed of water, complex sugars, salts which form the mucus. This matrix is distributed evenly on the surface of the epithelium by the ciliated cells to form a protective layer. Basal cells are undierentiated cells with the potential to divide to form new goblet cells and new ciliated cells. Inhaled chemicals (toxicants, medicine) can be metabolized by the tissue and excreted in the basal media.

Credit: BAT

Effective lab-based tests are required to eliminate the need for animal testing in assessing the toxicological effects of inhaled chemicals and safety of medicines. Traditional lab-based tests use cell lines that do not reflect normal lung structure and physiology, and in some cases have reduced, or loss of, key metabolic processes.

Consequently, the long-term toxicological response of the cells can differ from what actually happens in humans. Since the damaging effect of inhaled toxicants usually results from repeated exposures to low doses over a prolonged period, it is important that cell culture systems maintain their physiology, in particular the ability to metabolise chemicals over time.

Scientists at British American Tobacco assessed a commercially available 3-dimensional in vitro tissue model, MucilAir™ by growing human respiratory epithelial cells at the air-liquid interface on a porous membrane - in this case nasal cells were used. The results show that the cells in the test model remain viable for at least six months, which makes this tissue model suitable for testing the impact of repeated exposures over a prolonged period, as in the case of the typical smoker. This results of this study will be published in Toxicology in Vitro.

The researchers maintained MucilAir™ in culture for six months, during which they periodically measured biomarkers that are key characteristics of normal respiratory epithelium. These included mucus secretion, cilia beat frequency, metabolic enzyme activity and gene expression.

The researchers compared the results with those from standard human sputum and metabolic gene expression in normal human lung. They found that MucilAir™ cells retain normal metabolic gene expression and key protein markers typical of the respiratory epithelium. When the MucilAir™ cultures were assessed over a period of six months, no significant changes in the expression profile of the tested proteins, metabolic genes, and metabolic activity was detected- confirming the suitability of MucilAir™ for use in long-term toxicological testing.

"The combined weight of evidence from proteomics, gene expression and protein activity demonstrates that the MucilAir™ system is far better than continuous cell lines for assessing the effect of repeated exposure to inhaled chemicals and toxicants," says senior scientist Emmanuel Minet. "Cell lines have been extensively used in research, but suffer from a key problem; they are often derived from diseased tissues and don't have normal characteristics, hence the need to use more physiologically relevant systems," he said. "Our results give clear supporting evidence that MucilAir™ has the potential to be used to test not only the effect of acute doses of toxicants and medicines but also the effect of repeated doses over time."

The researchers plan to use the model to compare the toxicological effect of repeated exposures to aerosols generated from conventional and next-generation tobacco and nicotine products. This research will be published in Toxicology in Vitro.

Media Contact

Marina Murphy
marina_murphy@bat.com
44-077-111-59135

 @BATPress

http://www.bat-science.com 

Marina Murphy | EurekAlert!

Further reports about: 3-dimensional Toxicology activity doses epithelium lung metabolic pollutants toxicity

More articles from Health and Medicine:

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

nachricht Study advances gene therapy for glaucoma
17.01.2018 | University of Wisconsin-Madison

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>