Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A human respiratory tissue model to assess the toxicity of inhaled chemicals and pollutants


An extensive analysis shows that MucilAir™ cells maintain normal biochemical processes for at least six months

A 3-dimensional model of human respiratory tissue has been shown to be an effective platform for measuring the impact of chemicals, like those found in cigarette smoke, or other aerosols on the lung.

Schematic representation of the MucilAir™ pseudostratied respiratory epithelium grown on the surface of a porous membrane with culture medium on the basal side and air on the apical side. The goblet cells secrete mucin proteins in a matrix composed of water, complex sugars, salts which form the mucus. This matrix is distributed evenly on the surface of the epithelium by the ciliated cells to form a protective layer. Basal cells are undierentiated cells with the potential to divide to form new goblet cells and new ciliated cells. Inhaled chemicals (toxicants, medicine) can be metabolized by the tissue and excreted in the basal media.

Credit: BAT

Effective lab-based tests are required to eliminate the need for animal testing in assessing the toxicological effects of inhaled chemicals and safety of medicines. Traditional lab-based tests use cell lines that do not reflect normal lung structure and physiology, and in some cases have reduced, or loss of, key metabolic processes.

Consequently, the long-term toxicological response of the cells can differ from what actually happens in humans. Since the damaging effect of inhaled toxicants usually results from repeated exposures to low doses over a prolonged period, it is important that cell culture systems maintain their physiology, in particular the ability to metabolise chemicals over time.

Scientists at British American Tobacco assessed a commercially available 3-dimensional in vitro tissue model, MucilAir™ by growing human respiratory epithelial cells at the air-liquid interface on a porous membrane - in this case nasal cells were used. The results show that the cells in the test model remain viable for at least six months, which makes this tissue model suitable for testing the impact of repeated exposures over a prolonged period, as in the case of the typical smoker. This results of this study will be published in Toxicology in Vitro.

The researchers maintained MucilAir™ in culture for six months, during which they periodically measured biomarkers that are key characteristics of normal respiratory epithelium. These included mucus secretion, cilia beat frequency, metabolic enzyme activity and gene expression.

The researchers compared the results with those from standard human sputum and metabolic gene expression in normal human lung. They found that MucilAir™ cells retain normal metabolic gene expression and key protein markers typical of the respiratory epithelium. When the MucilAir™ cultures were assessed over a period of six months, no significant changes in the expression profile of the tested proteins, metabolic genes, and metabolic activity was detected- confirming the suitability of MucilAir™ for use in long-term toxicological testing.

"The combined weight of evidence from proteomics, gene expression and protein activity demonstrates that the MucilAir™ system is far better than continuous cell lines for assessing the effect of repeated exposure to inhaled chemicals and toxicants," says senior scientist Emmanuel Minet. "Cell lines have been extensively used in research, but suffer from a key problem; they are often derived from diseased tissues and don't have normal characteristics, hence the need to use more physiologically relevant systems," he said. "Our results give clear supporting evidence that MucilAir™ has the potential to be used to test not only the effect of acute doses of toxicants and medicines but also the effect of repeated doses over time."

The researchers plan to use the model to compare the toxicological effect of repeated exposures to aerosols generated from conventional and next-generation tobacco and nicotine products. This research will be published in Toxicology in Vitro.

Media Contact

Marina Murphy


Marina Murphy | EurekAlert!

Further reports about: 3-dimensional Toxicology activity doses epithelium lung metabolic pollutants toxicity

More articles from Health and Medicine:

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

nachricht Breakthrough in Mapping Nicotine Addiction Could Help Researchers Improve Treatment
04.10.2016 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>