Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A hallmark for the development of testicular tumors found in the aberrant regulation of small non-coding RNA

22.11.2013
Researchers from the Bellvitge Biomedical Research Institute (IDIBELL) in Barcelona, Spain, have studied the role of a peculiar class of small non-coding RNAs that are mainly expressed in the human male germline.

Whereas messenger RNAs transmit the genetic information required for protein synthesis, non-coding RNAs are functional molecules that are never translated into proteins and have important roles in diverse cellular processes. In human spermatozoa, these tiny RNAs are epigenetically regulated (by changes in the genome that do not alter the DNA sequence, such as DNA methylation) and play a critical role in male germline development. Importantly, these RNAs have also been detected in human cancer cells.

In a work published in the January 2014 issue of Epigenetics, which is entirely devoted to "Non-coding RNAs in Epigenetic Regulation," the researchers asked if in their natural functional context (the normal human testis) these small RNAs undergo aberrant epigenetic regulation, compromising their function and contributing to the transformation of cells into testicular tumor cells. The reported data suggest that epigenetic disruption of an entire small non-coding RNA pathway in human testis is indeed a hallmark for the development of testicular tumors.

For the full paper, visit the following link: https://www.landesbioscience.com/journals/epigenetics/article/27237/

To access all the articles in this Special Focus Issue on "Non-coding RNAs in Epigenetic Regulation," visit the following link: http://www.landesbioscience.com/journals/epigenetics/toc/volume/9/issue/1/

Andrew Thompson | EurekAlert!
Further information:
http://www.landesbioscience.com

Further reports about: DNA RNA Regulation cellular process epigenetic non-coding small RNA

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>