Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A genetic accelerator hits the gas on autoimmune diseases

17.01.2012
Italian researchers found a DNA sequence that cause the most severe cases of lupus

A "genetic accelerator" is responsible for the most severe cases of Lupus (systemic lupus erythemathosus), an autoimmune disease: the accelerator, called enhancer HS1.2, speeds up the activity of some critical genes of the immune system involved in the disease.

A team of Italian researchers at the Catholic University of Sacred Heart in Rome found that the enhancer HS1.2 is like the accelerator of the car and boosts the pathological immune response typical of the disease by enhancing the production of the pathological antibodies that attack the patient's body instead of defending it (autoantibodies).

Professor Gianfranco Ferraccioli, Head of the Rheumatology Unit of Rheumatology and Internal Medicine of the Catholic University led the research in collaboration with Professor Domenico Frezza at Tor Vergata University of Rome and Professor Raffaella Scorza at University of Milan and they published their results in the Annals of the Rheumatic Diseases.

The discovery could lead to more targeted and effective therapies against this complex disease, in particular against the most severe cases, Professor Ferraccioli explained.

Systemic lupus erythematosus is an autoimmune disease, that is a condition in which the patient's immune system goes haywire and begins to attack the body rather than defend it. Lupus affects about 60,000 people in Italy, with a major prevalence among females. Lupus affects so several different organs and tissues and causes a variety of symptoms, including joint pain, fever, skin rashes, hair loss, Raynaud's disease, anemia, nephritis.

The therapies currently used are based on cortisone, anti-malarial drugs and immunosuppressants (azathioprine, mycophenolate, cyclophosphamide) and biologic drugs (rituximab, Belimumab).

But in many cases Lupus is more aggressive and so far the origin of this particular severity was quite unclear.

Italian researchers discovered that the cause of the most severe cases is the accelerator HS1.2 enhancer. Enhancers are DNA sequences that accelerate the activation of neighboring genes and enhance their functioning, hence the name.

HS1.2 leads to enhanced activation of the "transcription factor NF-KB" (a transcription factor is a molecule that "reads" the genes to make them work), which in turn dramatically increases the aggressiveness of the inflammatory processes underlying the disease.

Italian researchers have discovered that over 30 per cent of the patients has the enhancer HS1.2 in their Dna and that it causes a more severe form of Lupus.

The researchers reached this finding after demonstrating that the enhancer HS1.2 promotes also other autoimmune diseases such as rheumatoid arthritis and identified how the enhancer causes increased susceptibility to autoimmune diseases.

"Our results suggest that new drugs that turn off the enhancer HS1.2, or inhibit its effect on NF-KB, can stop the disease without the need for immunosuppressive drugs or other therapies with many side effects," Ferraccioli said. "Moreover the discovery of the role of this enhancer allows us to better classify patients and formulate a precise prognosis for each one moving toward more personalized care."

Gianfranco Ferraccioli | EurekAlert!
Further information:
http://www.rm.unicatt.it

More articles from Health and Medicine:

nachricht Scientists track ovarian cancers to site of origin: Fallopian tubes
23.10.2017 | Johns Hopkins Medicine

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>