Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A genetic accelerator hits the gas on autoimmune diseases

17.01.2012
Italian researchers found a DNA sequence that cause the most severe cases of lupus

A "genetic accelerator" is responsible for the most severe cases of Lupus (systemic lupus erythemathosus), an autoimmune disease: the accelerator, called enhancer HS1.2, speeds up the activity of some critical genes of the immune system involved in the disease.

A team of Italian researchers at the Catholic University of Sacred Heart in Rome found that the enhancer HS1.2 is like the accelerator of the car and boosts the pathological immune response typical of the disease by enhancing the production of the pathological antibodies that attack the patient's body instead of defending it (autoantibodies).

Professor Gianfranco Ferraccioli, Head of the Rheumatology Unit of Rheumatology and Internal Medicine of the Catholic University led the research in collaboration with Professor Domenico Frezza at Tor Vergata University of Rome and Professor Raffaella Scorza at University of Milan and they published their results in the Annals of the Rheumatic Diseases.

The discovery could lead to more targeted and effective therapies against this complex disease, in particular against the most severe cases, Professor Ferraccioli explained.

Systemic lupus erythematosus is an autoimmune disease, that is a condition in which the patient's immune system goes haywire and begins to attack the body rather than defend it. Lupus affects about 60,000 people in Italy, with a major prevalence among females. Lupus affects so several different organs and tissues and causes a variety of symptoms, including joint pain, fever, skin rashes, hair loss, Raynaud's disease, anemia, nephritis.

The therapies currently used are based on cortisone, anti-malarial drugs and immunosuppressants (azathioprine, mycophenolate, cyclophosphamide) and biologic drugs (rituximab, Belimumab).

But in many cases Lupus is more aggressive and so far the origin of this particular severity was quite unclear.

Italian researchers discovered that the cause of the most severe cases is the accelerator HS1.2 enhancer. Enhancers are DNA sequences that accelerate the activation of neighboring genes and enhance their functioning, hence the name.

HS1.2 leads to enhanced activation of the "transcription factor NF-KB" (a transcription factor is a molecule that "reads" the genes to make them work), which in turn dramatically increases the aggressiveness of the inflammatory processes underlying the disease.

Italian researchers have discovered that over 30 per cent of the patients has the enhancer HS1.2 in their Dna and that it causes a more severe form of Lupus.

The researchers reached this finding after demonstrating that the enhancer HS1.2 promotes also other autoimmune diseases such as rheumatoid arthritis and identified how the enhancer causes increased susceptibility to autoimmune diseases.

"Our results suggest that new drugs that turn off the enhancer HS1.2, or inhibit its effect on NF-KB, can stop the disease without the need for immunosuppressive drugs or other therapies with many side effects," Ferraccioli said. "Moreover the discovery of the role of this enhancer allows us to better classify patients and formulate a precise prognosis for each one moving toward more personalized care."

Gianfranco Ferraccioli | EurekAlert!
Further information:
http://www.rm.unicatt.it

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>