Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A flu vaccine that lasts

07.12.2010
NIH scientists consider prospects for a universal influenza vaccine

WHAT: The costly, time-consuming process of making, distributing and administering millions of seasonal flu vaccines would become obsolete if researchers could design a vaccine that confers decades-long protection from any flu virus strain.

Making such a universal influenza vaccine is feasible but licensing it may require innovation on several fronts, including finding new ways to evaluate the efficacy of vaccine candidates in clinical trials, conclude scientists from the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.

In a Nature Medicine commentary, authors Anthony S. Fauci, M.D., NIAID director, and Gary J. Nabel, M.D., Ph.D., director of the NIAID Vaccine Research Center, contrast the envisioned universal influenza vaccine with today's seasonal influenza vaccines. Current seasonal flu vaccines prompt immune responses that mimic those made following natural exposure to the flu virus. Both exposure and vaccination elicit antibodies directed at the roundish head portion of a lollypop-shaped flu protein called hemagglutinin (HA). But the composition of HA's head changes from year to year, gradually becoming unrecognizable to previously made antibodies. Thus, vaccination—which induces antibodies tailored to that year's HA head region—must be repeated annually to maintain immunity to the virus.

A universal flu vaccine would have to elicit a type of immune response that rarely occurs naturally, note Drs. Fauci and Nabel. A detailed understanding of flu virus structure may make such a vaccine possible, they add. For example, scientists have identified a region of HA's stem that is shared among diverse strains, and a research group at NIAID's Vaccine Research Center recently created influenza vaccines that elicit antibodies aimed at this shared region, rather than at the quick-changing head. Animals that received the experimental vaccines were protected from a diverse array of flu virus strains.

In essence, say the authors, thanks to the growing body of knowledge about flu viruses and their interactions with the cells of humans and animals they infect, it may one day be possible to make a universal flu vaccine that improves on nature. They also outline how such a vaccine might proceed through stages of clinical testing and on toward licensing. For example, they sort the 16 known influenza virus subtypes into three tiers based on their likelihood of causing widespread disease in humans. Drs. Fauci and Nabel suggest that vaccine development might be prioritized to produce first-generation universal influenza vaccine candidates that protect against multiple virus strains within the highest priority group.

For more information about NIAID research on influenza, visit the NIAID flu Web portal.

ARTICLE: GJ Nabel and AS Fauci. Induction of unnatural immunity: Prospects for a broadly protective universal influenza vaccine. Nature Medicine DOI: nm.2272 (2010)

WHO: NIAID Director Anthony S. Fauci, M.D., and Gary J. Nabel, M.D., Ph.D., director, Vaccine Research Center, NIAID, are available to discuss their paper.

CONTACT: To schedule interviews, please contact Anne A. Oplinger in the NIAID Office of Communications at 301-402-1663 or niaidnews@niaid.nih.gov.

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

The National Institutes of Health (NIH)—The Nation's Medical Research Agency—includes 27 Institutes and Centers and is a component of the U. S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov

Anne A. Oplinger | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>