Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

After a fight with a partner, brain activity predicts emotional resiliency

10.03.2010
Activity in the lateral prefrontal cortex is an indicator emotion regulation in day-to-day life

Common wisdom tells us that for a successful relationship partners shouldn't go to bed angry. But new research from a psychologist at Harvard University suggests that brain activity—specifically in the region called the lateral prefrontal cortex—is a far better indicator of how someone will feel in the days following a fight with his or her partner.

Individuals who show more neural activity in the lateral prefrontal cortex are less likely to be upset the day after fighting with partners, according to a study in this month's Biological Psychiatry. The findings point to the lateral prefrontal cortex's role in emotion regulation, and suggest that improved function within this region may also improve day-to-day mood.

"What we found, as you might expect, was that everybody felt badly on the day of the conflict with their partners," says lead author Christine Hooker, assistant professor of psychology in Harvard's Faculty of Arts and Sciences. "But the day after, people who had high lateral prefrontal cortex activity felt better and the people who had low lateral prefrontal cortex activity continued to feel badly."

Hooker's co-authors are Özlem Ayduk, Anett Gyurak, Sara Verosky, and Asako Miyakawa, all of the University of California at Berkeley.

Research has previously shown that the lateral prefrontal cortex is associated with emotion regulation in laboratory tests, but the effect has never been proven to be connected to experiences in day-to-day life.

This study involved healthy couples in a relationship for longer than three months. While in an fMRI scanner, participants viewed pictures of their partners with positive, negative, or neutral facial expressions and their neural activity was recorded while reacting to the images. While in the lab, participants were also tested for their broader cognitive control skills, such as their ability to control impulses and the shift and focus of attention.

For three weeks, the couples also recorded in an online diary their daily emotional state and whether they had had a fight with their partners.

Hooker found that participants who displayed greater activity in their lateral prefrontal cortex while viewing their partners' negative facial expressions in the scanner were less likely to report a negative mood the day after a fight with their partners, indicating that they were better able to emotionally "bounce back" after the conflict.

She also found that those who had more activity in the lateral prefrontal cortex and greater emotional regulation after a fight displayed more cognitive control in laboratory tests, indicating a link between emotion regulation and broader cognitive control skills.

"The key factor is that the brain activity in the scanner predicted their experience in life," says Hooker. "Scientists believe that what we are looking at in the scanner has relevance to daily life, but obviously we don't live our lives in a scanner. If we can connect what we see in the scanner to somebody's day-to-day emotion-regulation capacity, it could help psychologists predict how well people will respond to stressful events in their lives."

While Hooker acknowledges that more work must be done to develop clinical applications for the research, it may be that lateral prefrontal cortex function provides information about a person's vulnerability to develop mood problems after a stressful event. This raises the question as to whether increasing lateral prefrontal cortex function will improve emotion regulation capacity.

The research was funded by the National Institute for Mental Health and the National Alliance for Research in Schizophrenia and Depression.

Amy Lavoie | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>