Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

After a fight with a partner, brain activity predicts emotional resiliency

10.03.2010
Activity in the lateral prefrontal cortex is an indicator emotion regulation in day-to-day life

Common wisdom tells us that for a successful relationship partners shouldn't go to bed angry. But new research from a psychologist at Harvard University suggests that brain activity—specifically in the region called the lateral prefrontal cortex—is a far better indicator of how someone will feel in the days following a fight with his or her partner.

Individuals who show more neural activity in the lateral prefrontal cortex are less likely to be upset the day after fighting with partners, according to a study in this month's Biological Psychiatry. The findings point to the lateral prefrontal cortex's role in emotion regulation, and suggest that improved function within this region may also improve day-to-day mood.

"What we found, as you might expect, was that everybody felt badly on the day of the conflict with their partners," says lead author Christine Hooker, assistant professor of psychology in Harvard's Faculty of Arts and Sciences. "But the day after, people who had high lateral prefrontal cortex activity felt better and the people who had low lateral prefrontal cortex activity continued to feel badly."

Hooker's co-authors are Özlem Ayduk, Anett Gyurak, Sara Verosky, and Asako Miyakawa, all of the University of California at Berkeley.

Research has previously shown that the lateral prefrontal cortex is associated with emotion regulation in laboratory tests, but the effect has never been proven to be connected to experiences in day-to-day life.

This study involved healthy couples in a relationship for longer than three months. While in an fMRI scanner, participants viewed pictures of their partners with positive, negative, or neutral facial expressions and their neural activity was recorded while reacting to the images. While in the lab, participants were also tested for their broader cognitive control skills, such as their ability to control impulses and the shift and focus of attention.

For three weeks, the couples also recorded in an online diary their daily emotional state and whether they had had a fight with their partners.

Hooker found that participants who displayed greater activity in their lateral prefrontal cortex while viewing their partners' negative facial expressions in the scanner were less likely to report a negative mood the day after a fight with their partners, indicating that they were better able to emotionally "bounce back" after the conflict.

She also found that those who had more activity in the lateral prefrontal cortex and greater emotional regulation after a fight displayed more cognitive control in laboratory tests, indicating a link between emotion regulation and broader cognitive control skills.

"The key factor is that the brain activity in the scanner predicted their experience in life," says Hooker. "Scientists believe that what we are looking at in the scanner has relevance to daily life, but obviously we don't live our lives in a scanner. If we can connect what we see in the scanner to somebody's day-to-day emotion-regulation capacity, it could help psychologists predict how well people will respond to stressful events in their lives."

While Hooker acknowledges that more work must be done to develop clinical applications for the research, it may be that lateral prefrontal cortex function provides information about a person's vulnerability to develop mood problems after a stressful event. This raises the question as to whether increasing lateral prefrontal cortex function will improve emotion regulation capacity.

The research was funded by the National Institute for Mental Health and the National Alliance for Research in Schizophrenia and Depression.

Amy Lavoie | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>