Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

After a fight with a partner, brain activity predicts emotional resiliency

10.03.2010
Activity in the lateral prefrontal cortex is an indicator emotion regulation in day-to-day life

Common wisdom tells us that for a successful relationship partners shouldn't go to bed angry. But new research from a psychologist at Harvard University suggests that brain activity—specifically in the region called the lateral prefrontal cortex—is a far better indicator of how someone will feel in the days following a fight with his or her partner.

Individuals who show more neural activity in the lateral prefrontal cortex are less likely to be upset the day after fighting with partners, according to a study in this month's Biological Psychiatry. The findings point to the lateral prefrontal cortex's role in emotion regulation, and suggest that improved function within this region may also improve day-to-day mood.

"What we found, as you might expect, was that everybody felt badly on the day of the conflict with their partners," says lead author Christine Hooker, assistant professor of psychology in Harvard's Faculty of Arts and Sciences. "But the day after, people who had high lateral prefrontal cortex activity felt better and the people who had low lateral prefrontal cortex activity continued to feel badly."

Hooker's co-authors are Özlem Ayduk, Anett Gyurak, Sara Verosky, and Asako Miyakawa, all of the University of California at Berkeley.

Research has previously shown that the lateral prefrontal cortex is associated with emotion regulation in laboratory tests, but the effect has never been proven to be connected to experiences in day-to-day life.

This study involved healthy couples in a relationship for longer than three months. While in an fMRI scanner, participants viewed pictures of their partners with positive, negative, or neutral facial expressions and their neural activity was recorded while reacting to the images. While in the lab, participants were also tested for their broader cognitive control skills, such as their ability to control impulses and the shift and focus of attention.

For three weeks, the couples also recorded in an online diary their daily emotional state and whether they had had a fight with their partners.

Hooker found that participants who displayed greater activity in their lateral prefrontal cortex while viewing their partners' negative facial expressions in the scanner were less likely to report a negative mood the day after a fight with their partners, indicating that they were better able to emotionally "bounce back" after the conflict.

She also found that those who had more activity in the lateral prefrontal cortex and greater emotional regulation after a fight displayed more cognitive control in laboratory tests, indicating a link between emotion regulation and broader cognitive control skills.

"The key factor is that the brain activity in the scanner predicted their experience in life," says Hooker. "Scientists believe that what we are looking at in the scanner has relevance to daily life, but obviously we don't live our lives in a scanner. If we can connect what we see in the scanner to somebody's day-to-day emotion-regulation capacity, it could help psychologists predict how well people will respond to stressful events in their lives."

While Hooker acknowledges that more work must be done to develop clinical applications for the research, it may be that lateral prefrontal cortex function provides information about a person's vulnerability to develop mood problems after a stressful event. This raises the question as to whether increasing lateral prefrontal cortex function will improve emotion regulation capacity.

The research was funded by the National Institute for Mental Health and the National Alliance for Research in Schizophrenia and Depression.

Amy Lavoie | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>