Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A diet rich in slowly digested carbs reduces markers of inflammation in overweight and obese adults

12.01.2012
Such a diet also increases a hormone that helps regulate metabolism of fat and sugar

Among overweight and obese adults, a diet rich in slowly digested carbohydrates, such as whole grains, legumes and other high-fiber foods, significantly reduces markers of inflammation associated with chronic disease, according to a new study by Fred Hutchinson Cancer Research Center.

Such a "low-glycemic-load" diet, which does not cause blood-glucose levels to spike, also increases a hormone that helps regulate the metabolism of fat and sugar. These findings are published online ahead of the February print issue of the Journal of Nutrition.

The controlled, randomized feeding study, which involved 80 healthy Seattle-area men and women – half of normal weight and half overweight or obese – found that among overweight and obese study participants, a low-glycemic-load diet reduced a biomarker of inflammation called C-reactive protein by about 22 percent.

"This finding is important and clinically useful since C-reactive protein is associated with an increased risk for many cancers as well as cardiovascular disease," said lead author Marian Neuhouser, Ph.D., R.D., a member of the Cancer Prevention Program in the Public Health Sciences Division at the Hutchinson Center. "Lowering inflammatory factors is important for reducing a broad range of health risks. Showing that a low-glycemic-load diet can improve health is important for the millions of Americans who are overweight or obese."

Neuhouser and colleagues also found that among overweight and obese study participants, a low-glycemic-load diet modestly increased – by about 5 percent – blood levels of a protein hormone called adiponectin. This hormone plays a key role in protecting against several cancers, including breast cancer, as well as metabolic disorders such as type-2 diabetes, nonalcoholic fatty liver disease and hardening of the arteries.

"Glycemic load" refers to how the intake of carbohydrates, adjusted for total grams of carbohydrate, affects blood-sugar levels. Lentils or pinto beans have a glycemic load that is approximately three times lower than instant mashed potatoes, for example, and therefore won't cause blood-sugar levels to rise as quickly.

Study participants completed two 28-day feeding periods in random order – one featuring high-glycemic-load carbohydrates, which typically are low-fiber, highly processed carbs such as white sugar, fruit in canned syrup and white flour; and the other featuring low-glycemic-load carbohydrates, which are typically higher in fiber, such as whole-grain breads and cereals. The diets were identical in carbohydrate content, calories and macronutrients. All food was provided by the Hutchinson Center's Human Nutrition Laboratory, and study participants maintained weight and physical activity throughout.

"Because the two diets differed only by glycemic load, we can infer that the changes we observed in important biomarkers were due to diet alone," Neuhouser said.

"The bottom line is that when it comes to reducing markers of chronic-disease risk, not all carbohydrates are created equal. Quality matters," she said. "There are easy dietary changes people can make. Whenever possible, choose carbohydrates that are less likely to cause rapid spikes in blood glucose." These types of low-glycemic-load carbs include whole grains; legumes such as kidney beans, soy beans, pinto beans and lentils; milk; and fruits such as apples, oranges, grapefruit and pears. Neuhouser also recommends avoiding high-glycemic-load carbohydrates that quickly raise blood glucose. These include highly processed foods that are full of white sugar and white flour, and sugar-sweetened beverages and breakfast cereals.

The study was funded by the National Cancer Institute's Transdisciplinary Research on Energetics and Cancer (TREC) Initiative, a nationwide research consortium that aims to better understand the link between obesity and cancer. The Hutchinson Center houses the initiative's coordinating center.

At Fred Hutchinson Cancer Research Center, our interdisciplinary teams of world-renowned scientists and humanitarians work together to prevent, diagnose and treat cancer, HIV/AIDS and other diseases. Our researchers, including three Nobel laureates, bring a relentless pursuit and passion for health, knowledge and hope to their work and to the world. For more information, please visit www.fhcrc.org.

Kristen Lidke Woodward | EurekAlert!
Further information:
http://www.fhcrc.org

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>