Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A novel computational model -- how Parkinson's medications affect learning and attention

21.01.2010
A new brain-based computational model is helping to understand how Parkinson's disease and dopamine medications—used to treat motor symptoms caused by the disease— can affect learning and attention.

As reported in a forthcoming article in the Journal of Cognitive Neuroscience, http://www.mitpressjournals.org/doi/pdf/10.1162/jocn.2010.21420, a new computational model, developed by Drs. Ahmed Moustafa and Mark Gluck, at the Center for Molecular and Behavioral Neuroscience at Rutgers University, Newark, has shown how Parkinson’s disease affects attentional performance during learning.

The same model also shows that dopamine medications enhance attentional performance in Parkinson’s patients in agreement with past observations. Future lab experiments with Parkinson’s patients will be conducted by Moustafa and Mark Gluck to test further model predictions.

Parkinson's is a disease that mainly affects dopamine levels in a brain area known as the basal ganglia, which is important for motor control. Hence, damage to this area leads to movement disorders, including shaking and difficulty moving--key symptoms of Parkinson's disease.

Over the past two decades, it became known to neurologists and experimental neuroscientists that Parkinson’s disease also affects non-motor functions, including memory, learning, and attention. Impairment in these processes affect the quality of life of the patients, thus, understanding the neural basis of motor and non-motor dysfunction in Parkinson’s disease is equally important.

Dopamine is also projected to other parts of the brain, including the prefrontal cortex, an area important for higher-level thinking, decision making, and attention. Dopamine projected to the prefrontal cortex is also reduced in Parkinson’s disease, as reported in many experimental studies with humans and animal models of Parkinson’s disease.

According to Moustafa and Gluck, until recently, existing computational models of Parkinson’s disease ignored any role played by dopamine in the prefrontal cortex. Moustafa and Gluck have designed a new computational model that shows how dopamine in the prefrontal cortex is important for attentional performance, and how dysfunction of dopamine in the prefrontal cortex can explain many of the non-motor deficits seen in Parkinson’s patients.

“Computational models are increasingly being used in the neurosciences and neurology to understand how neurological disorders affect brain and behavior,” said Moustafa. “This relatively new field—known as computational neuroscience— is promising to aid in designing new pharmacological and surgical intervention tools to treat neurological and psychiatric diseases.”

This research was funded by the National Institute for Neurological Disorders and Stroke (NINDS) and by a grant from the Bachman-Strauss Foundation's Dekker Foundation Fund.

For more information on Moustafa and Gluck’s research, and on the Center for Molecular and Behavioral Neuroscience at Rutgers University, Newark, visit http://cmbn.rutgers.edu/ or contact gluck@pavlov.rutgers.edu and ahmedhalimo@gmail.com.

Contact: Helen Paxton
973-353-5262
E-mail: paxton@andromeda.rutgers.edu

Helen Paxton | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>