Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A break for bone disease research

01.08.2011
A variant of a newly identified gene is linked to increased risk of developing osteoporosis in Japanese individuals

Osteoporosis is the reduction in bone strength that occurs during aging, which increases the chance of elderly people experiencing breaks. A genome-wide association study in the Japanese population has revealed that a genomic variant within a newly identified gene, which the discoverers have named FONG, enhances susceptibility to osteoporosis1.

Led by Shiro Ikegawa of the RIKEN Center for Genomic Medicine, the researchers began by examining the entire genomes of 190 Japanese individuals with osteoporosis and 1,557 controls. Based on the results of this initial study, they focused on 3,000 single nucleotide changes in the genomes of an additional 526 individuals with osteoporosis and 1,537 controls. Additional analyses in two further population samples led to the identification of the genomic variant, found on chromosome 2; however, there was no known gene around the variant. Instead, the researchers found only representations of portions of expressed genes in the form of several expressed sequence tags.

By analyzing messenger RNAs (mRNAs) expressed from the genomic region around the variant, Ikegawa and colleagues discovered that the genomic variant is within FONG, which stands ‘formiminotransferase N-terminal sub-domain containing gene’. This previously unknown gene is expressed in various human tissues, including bone. Because the genomic variant resides outside of the FONG protein-coding region, Ikegawa and colleagues hypothesized that the variant may somehow affect the expression levels of the FONG gene.

One domain of the FONG gene, the formiminotransferase N-terminal sub-domain, is common in many different species, which indicates that it could have a very important function for maintaining life. “This domain appears to be an enzyme that is responsible for converting the amino acid histidine to the amino acid glutamic acid,” says Ikuyo Inaba (nee Kou), a researcher in Ikegawa’s laboratory and the first author of the study.

Glutamic acid and its breakdown products are known to play an important role in maintaining the bones, so any problems with the creation of these compounds may lead to osteoporosis. “The glutamic acid signaling pathway may also affect osteoporosis risk in non-Japanese individuals,” she explains. “So, the association of this variant of the FONG gene with disease in other populations is worth investigating in the future.”

According to Inaba, further work is needed to determine how the osteoporosis-linked variant of the FONG gene can affect its expression. The identification of this variant in FONG—and its link to osteoporosis—can aid in the development of new therapies for this disease.

Reference
Kou, I., Takahashi, A., Urano, T., Fukui, N., Ito, H., Ozaki, K., Tanaka, T., Hosoi, T., Shiraki, M., Inoue, S., et al. Common variants in a novel gene, FONG on chromosome 2q33.1 confer risk of osteoporosis in Japanese. PLoS ONE e19641 (2011)

The corresponding author for this highlight is based at the Laboratory for Bone and Joint Diseases, RIKEN Center for Genomic Medicine

Saeko Okada | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>