Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A break for bone disease research

01.08.2011
A variant of a newly identified gene is linked to increased risk of developing osteoporosis in Japanese individuals

Osteoporosis is the reduction in bone strength that occurs during aging, which increases the chance of elderly people experiencing breaks. A genome-wide association study in the Japanese population has revealed that a genomic variant within a newly identified gene, which the discoverers have named FONG, enhances susceptibility to osteoporosis1.

Led by Shiro Ikegawa of the RIKEN Center for Genomic Medicine, the researchers began by examining the entire genomes of 190 Japanese individuals with osteoporosis and 1,557 controls. Based on the results of this initial study, they focused on 3,000 single nucleotide changes in the genomes of an additional 526 individuals with osteoporosis and 1,537 controls. Additional analyses in two further population samples led to the identification of the genomic variant, found on chromosome 2; however, there was no known gene around the variant. Instead, the researchers found only representations of portions of expressed genes in the form of several expressed sequence tags.

By analyzing messenger RNAs (mRNAs) expressed from the genomic region around the variant, Ikegawa and colleagues discovered that the genomic variant is within FONG, which stands ‘formiminotransferase N-terminal sub-domain containing gene’. This previously unknown gene is expressed in various human tissues, including bone. Because the genomic variant resides outside of the FONG protein-coding region, Ikegawa and colleagues hypothesized that the variant may somehow affect the expression levels of the FONG gene.

One domain of the FONG gene, the formiminotransferase N-terminal sub-domain, is common in many different species, which indicates that it could have a very important function for maintaining life. “This domain appears to be an enzyme that is responsible for converting the amino acid histidine to the amino acid glutamic acid,” says Ikuyo Inaba (nee Kou), a researcher in Ikegawa’s laboratory and the first author of the study.

Glutamic acid and its breakdown products are known to play an important role in maintaining the bones, so any problems with the creation of these compounds may lead to osteoporosis. “The glutamic acid signaling pathway may also affect osteoporosis risk in non-Japanese individuals,” she explains. “So, the association of this variant of the FONG gene with disease in other populations is worth investigating in the future.”

According to Inaba, further work is needed to determine how the osteoporosis-linked variant of the FONG gene can affect its expression. The identification of this variant in FONG—and its link to osteoporosis—can aid in the development of new therapies for this disease.

Reference
Kou, I., Takahashi, A., Urano, T., Fukui, N., Ito, H., Ozaki, K., Tanaka, T., Hosoi, T., Shiraki, M., Inoue, S., et al. Common variants in a novel gene, FONG on chromosome 2q33.1 confer risk of osteoporosis in Japanese. PLoS ONE e19641 (2011)

The corresponding author for this highlight is based at the Laboratory for Bone and Joint Diseases, RIKEN Center for Genomic Medicine

Saeko Okada | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>