Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A better way to measure the stiffness of cancer cells

01.03.2017

Laser technique peers through individual cells to gauge stiffness with unprecedented speed

Biomedical engineers at Duke University have discovered a way to detect signs of cancer on a cell-by-cell basis using two lasers and a camera.


Images of cells are analyzed to calculate the level of disorder in their internal structures. The more orderly the cell, the stiffer it may be, possibly indicating cancer.

Credit: Adam Wax, Duke University


As liquid flows past a cell, internal structures shift in the direction of the flow. The amount of shift can reveal a cell's stiffness, which is higher in cancerous tissue. Blue areas indicate the cell's internal structures are becoming less dense, whereas the red areas are becoming more so.

Credit: Adam Wax, Duke University

Several medical devices currently in use and in clinical trials around the world look for increases in cellular stiffness as an indicator of cancerous tissue. These devices, however, rely on readings from many cells clustered together within the body and cannot operate on a cellular level.

In a study published online Feb. 28 in the Biophysical Journal, researchers describe a technique for assessing an individual cell's stiffness using patterns that appear within its internal structure. The results show that the more organized its innards, the stiffer the cell.

In previous work, Adam Wax, professor of biomedical engineering at Duke, showed that a cell's internal structures shift as fluids flow around its exterior.

"Think of a cell as a large Jell-O mold with a lot of fruit suspended in it," said Wax. "If you blow on it really hard with compressed air, everything is going to move in the direction of the air a little bit."

Wax also showed that he could calculate cellular stiffness by measuring the amount of that shift. This discovery had many advantages over traditional methods of measuring the rigidity of a single cell. For example, no physical contact with the cell was required and measurements took much less time.

"Traditional approaches like atomic force microscopy take all day just to prepare a single sample," said Will Eldridge, a PhD student in Wax's lab and first author of the paper. "Using a moving liquid to measure shear flow only takes 30-40 minutes to image a group of cells."

Still not satisfied with that timetable, Wax and Eldridge tried to find a visual metric that could do the same job in less time. In the new paper, they show that the amount of disorder found within a cell's internal structures directly correlates to its stiffness.

To measure cellular disorder, the researchers shine a laser through a cell and compare it to a second, unobstructed beam. The differences in the amount of time it takes for the two lasers to travel through the sample are then analyzed to produce a picture, revealing just how disordered the cell's internal structures are.

To prove their idea worked, the group measured these "phase disorders" in five different types of live cancer cells just before measuring their stiffness using the already proven "Jell-O mold" technique. As hoped, the two metrics were highly correlated.

"The speed of this technique is only limited by the size of your camera's field of view," said Eldridge. "You could potentially measure hundreds of individual cells in a matter of seconds."

More work is needed to determine the exact relationship between the two measurements, but Wax is hopeful that the technique could be translated into a new biomedical device for cancer screening.

"It's widely known that cellular stiffness is an indicator of cancer, but there's no viable diagnostic tool that can use that knowledge on a cellular scale," said Wax. "With this technique, I can see a path to creating a high-throughput system that could quickly and easily screen for cervical, esophageal or colon cancer -- anywhere you could take a tissue scraping."

###

This work was supported by the National Science Foundation (CBET 1604562).

CITATION: "Optical phase measurements of disorder strength link microstructure to cell stiffness," W.J. Eldridge, Z.A. Steelman, B. Loomis, A. Wax. Biophysical Journal, Feb. 28, 2017. DOI: 10.1016/j.bpj.2016.12.016

Media Contact

Ken Kingery
ken.kingery@duke.edu
919-660-8414

 @DukeU

http://www.duke.edu 

Ken Kingery | EurekAlert!

More articles from Health and Medicine:

nachricht Research offers clues for improved influenza vaccine design
09.04.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Injecting gene cocktail into mouse pancreas leads to humanlike tumors
06.04.2018 | University of Texas Health Science Center at San Antonio

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>