Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3 subtypes of gastric cancer suggest different treatment approaches

28.08.2013
Stomach cancer, one of the leading causes of cancer death worldwide, actually falls into three broad subtypes that respond differently to currently available therapies, according to researchers at Duke-NUS Graduate Medical School Singapore.

The finding could greatly improve patient care with the development of a genetic test to classify tumors and match them to the therapies that offer the best outcomes.


Gastric cancer is the second-most lethal malignancy in the world, behind lung cancer.

Credit: Duke Medicine

"One of the features that makes gastric cancer so lethal is that it arises from many genetic alterations, creating differences in how the tumors respond to therapies," said Steve Rozen, Ph.D., director of the Centre for Computational Biology at Duke-NUS. Rozen is senior author of the study published in the September issue of the journal Gastroenterology. "What our study has shown is that there are actually three distinct molecular classifications that appear to be biologically and therapeutically meaningful."

Worldwide, only lung cancer is more lethal than stomach cancer. Rates in all countries have been dropping for decades, and are much lower in the United States than in Asia, but the malignancy still afflicts more than 21,000 people in the U.S. a year, according to the National Cancer Institute.

Despite differences in the way their tumors respond to treatments, patients often receive a "one-size-fits-all" treatment approach, resulting in a five-year survival rate of about 27 percent in the United States.

"There has been an urgent need for improved classification of gastric cancer that provides insight into the biology of the tumors that might help predict treatment response," said co-senior author Patrick Tan, M.D., PhD., professor in the Cancer and Stem Cell Biology Program at Duke-NUS.

Using a technology called microarray-based gene expression profiling, Rozen and colleagues analyzed 248 gastric tumors, then further grouped them according to the genes that were expressed in the tumors.

The gene expression analysis broadly sorts the tumors into three subtypes: proliferative, metabolic and mesenchymal. These subtypes also differ in their genomic and epigenomic properties.

Tumors of the proliferative subtype have high levels of genomic instability and a mutation in the TP53 tumor suppressor gene that occurs in many types of cancers. Cancer cells of the metabolic subtype are more sensitive to the chemotherapy agent 5-FU. Cancer cells of the mesenchymal subtype have some features of cancer stem cells, and are particularly sensitive to a class of therapies called PI3K−AKT−mTOR inhibitors.

"In terms of clinical treatment, there are two promising findings from our research," Rozen said. "One is that 5-FU has been particularly effective against metabolic- subtype tumors, and the second is that drugs targeting the PI3K−AKT−mTOR pathway may be particularly effective against mesenchymal-subtype cancers."

"If confirmed in future studies, the classification of gastric cancers reported here could guide development of therapies tailored to the molecular subtypes," said lead author Zhengdeng Lei, PhD.

In addition to Rozen, Tan and Lei, study authors include Iain Beehuat Tan, Kakoli Das, Niantao Deng, Hermioni Zouridis, Sharon Pattison, Clarinda Chua, Zhu Feng, Yeoh Khay Guan, Chia Huey Ooi, Tatiana Ivanova, Shenli Zhang, Minghui Lee, Jeanie Wu, Anna Ngo, Sravanthy Manesh, Elisabeth Tan, Bin Tean Teh, Jimmy Bok Yan So, Liang Kee Goh, Alex Boussiouta, Tony Kiat Hon Lim and Horst Flotow.

The study was supported by the Duke-NUS Signature Research Programs, with funding from the Singapore Agency for Science, Technology, and Research and the Singapore Ministry of Health; the Singapore National Medical Research Council; the Singapore National Research Foundation and Ministry of Education; and the Singapore Biomedical Research Council.

Sarah Avery | EurekAlert!
Further information:
http://www.duke.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>