Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2 drugs protect hearing better than 1

24.02.2011
Whether on a battlefield, in a factory or at a rock concert, noise-induced hearing loss is one of the most common hazards people face.

Researchers at Washington University School of Medicine in St. Louis have identified a low-dose, two-drug cocktail that reduces hearing loss in mice when given before they are exposed to loud noise. The drugs, already FDA-approved for other conditions, also treat hearing loss after noise exposure.

While both drugs are known to protect hearing on their own, this is the first study to test the two in combination.

"We found they have synergy," says Jianxin Bao, PhD, research associate professor of otolaryngology at the School of Medicine. "Two drugs at lower dosages can block more signaling pathways than one alone, improving results while reducing side effects. We got the idea from cancer and HIV studies that use multiple drugs at lower dosages."

Bao presented the work Feb. 21 in Baltimore at a meeting of the Association for Research in Otolaryngology.

In earlier work, Bao's group found that anticonvulsant drugs for treating epilepsy helped protect hearing in mice after exposure to loud noise. And other groups had determined that glucocorticoids, anti-inflammatory drugs often used to treat allergies and asthma, were also protective.

The reasons these drugs reduce noise-induced hearing loss are not well understood. But anticonvulsants are known to block calcium channels in nerve cells, and Bao's group speculates that the drug helps protect neuronal connections between hair cells and auditory neurons.

For this work, Bao and colleagues chose two drugs from the anti-epilepsy family and two from the glucocorticoid family.

"We picked drugs that have fewer side effects and that can be chronically used," says Bao, also associate professor of audiology and communication sciences.

To test each drug's ability to prevent hearing loss, they gave various doses to mice two hours before exposing them to noise. To test treatment, they administered the drugs to different groups of mice 24 hours after noise exposure.

Three of the four drugs showed increasing protection with higher doses. And two of the drugs in combination, the anticonvulsant zonisamide and the glucocorticoid methylprednisolone, showed comparable hearing protection at much lower doses than when administered alone.

While the drugs do not prevent all hearing loss following sustained exposure to noise at 110 decibels, or about the sound of a chain saw, they can significantly reduce the loss by about 10 to 30 decibels.

In other words, a mouse with normal hearing might be able to hear a sound at 30 decibels. After exposure to loud noise, that mouse might only hear sounds that reach 50 decibels. But if that mouse were treated, it might be able to hear sounds at 40 decibels. In humans, protecting 5 or 10 decibels makes a difference in being able to hear everyday speech.

Bao says their next step is to test the drugs in animals that model human hearing more closely.

Bao et al. "Development of a combination therapy for noise-induced hearing loss." Presented Feb. 21, 2011 at a meeting of the Association for Research in Otolaryngology.

This work was supported by the National Institute on Deafness and Other Communication Disorders.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked fourth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Julia Evangelou Strait | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>