Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Remote control' for cholesterol regulation discovered in brain

07.06.2010
Circulation of cholesterol is regulated in the brain by the hunger-signaling hormone ghrelin, researchers say. The finding points to a new potential target for the pharmacologic control of cholesterol levels.

The animal study, led by Matthias Tschöp, MD, professor in the University of Cincinnati (UC) endocrinology division, appears online ahead of print Sunday, June 6, 2010, in Nature Neuroscience.

"We have long thought that cholesterol is exclusively regulated through dietary absorption or synthesis and secretion by the liver," says Tschöp. "Our study shows for the first time that cholesterol is also under direct 'remote control' by specific neurocircuitry in the central nervous system."

The hormone ghrelin inhibits the melanocortin 4 receptor (MC4R) in the hypothalamus and is important for the regulation of food intake and energy expenditure. Tschöp and his team found that increased levels of ghrelin in mice caused the animals to develop increased levels of blood-circulating cholesterol. This, the authors say, is due to a reduction in the uptake of cholesterol by the liver.

The research team next tested the effects of genetically deleting or chemically blocking MC4R in the central nervous system. This test also yielded increased levels of cholesterol, suggesting that MC4R was the central element of the "remote control."

"We were stunned to see that by switching MC4R off in the brain, we could even make injected cholesterol remain in the blood much longer," says Tschöp, a researcher at UC's Metabolic Diseases Institute.

Cholesterol is a type of naturally occurring fat needed by the body, but too much cholesterol can lead to atherosclerosis, a buildup of plaque in the arteries. There are two types of cholesterol in humans―HDL (high-density lipoprotein) and LDL (low-density lipoprotein). LDL is considered the "bad" kind of cholesterol responsible for plaque buildup. HDL is the "good" kind that, in high levels, can prevent atherosclerosis.

Atherosclerosis can lead to heart attack. The American Heart Association estimates that a heart attack occurs every 34 seconds in the United States.

Due to the differences in the make-up of mice and human cholesterol, Tschöp and his team say more work is needed before their studies could be directly applied to humans, but they say their finding adds to a growing body of evidence for the central nervous system's direct control over essential metabolic processes.

This study was supported by a grant from the National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases.

Co-authors include Stephen Benoit, Joshua Bashford, William Davidson, Norm Granholm, Erin Grant, Susanna Hofmann, David Hui, Ruben Nogueiras, Diego Perez-Tilve, Paul Pfluger, Hilary Wilson-Perez and Stephen Woods, all from the University of Cincinnati; Myrtha Arnold from the Institute of Animal Science in Schwerzenbach, Switzerland; Andrew Butler and James Trevaskis from Pennington Biomedical Research Center in Louisiana; James Patterson and Mark Sleeman from Regeneron Pharmaceuticals; and Richard DiMarchi from Indiana University.

UC's Metabolic Diseases Institute, named in 2009, is located on UC's Reading Campus, formerly the Genome Research Institute, and is home to a team of researchers who focus on the genetic, molecular and cellular mechanisms of metabolic disorders, cancer and cardiovascular disease.

Dama Kimmon | EurekAlert!
Further information:
http://www.uc.edu

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>