Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Positive stress' helps protect eye from glaucoma

04.04.2012
Working in mice, scientists at Washington University School of Medicine in St. Louis have devised a treatment that prevents the optic nerve injury that occurs in glaucoma, a neurodegenerative disease that is a leading cause of blindness.

Researchers increased the resistance of optic nerve cells to damage by repeatedly exposing the mice to low levels of oxygen similar to those found at high altitudes. The stress of the intermittent low-oxygen environment induces a protective response called tolerance that makes nerve cells — including those in the eye — less vulnerable to harm.

The study, published online in Molecular Medicine, is the first to show that tolerance induced by preconditioning can protect against a neurodegenerative disease.

Stress is typically thought of as a negative phenomenon, but senior author Jeffrey M. Gidday, PhD, associate professor of neurological surgery and ophthalmology, and others have previously shown that the right kinds of stress, such as exercise and low-oxygen environments, can precondition cells and induce changes that make them more resistant to injury and disease.

Scientists previously thought tolerance in the central nervous system only lasted for a few days. But last year Gidday developed a preconditioning protocol​ that extended the effects of tolerance from days to months. By exposing mice to hypoxia, or low oxygen concentrations, several times over a two-week period, Gidday and colleagues triggered an extended period of tolerance. After preconditioning ended, the brain was protected from stroke damage for at least 8 weeks.

"Once we discovered tolerance could be extended, we wondered whether this protracted period of injury resistance could also protect against the slow, progressive loss of neurons that characterizes neurodegenerative diseases," Gidday says.

To find out, Gidday turned to an animal model of glaucoma, a condition linked to increases in the pressure of the fluid that fills the eye. The only treatments for glaucoma are drugs that reduce this pressure; there are no therapies designed to protect the retina and optic nerves from harm.

Scientists classify glaucoma as a neurodegenerative disease based on how slowly and progressively it kills retinal ganglion cells. The bodies of these cells are located in the retina of the eye; their branches or axons come together in bundles and form the optic nerves. Scientists don't know if damage begins in the bodies or axons of the cells, but as more and more retinal ganglion cells die, patients experience peripheral vision loss and eventually become blind.

For the new study, Yanli Zhu, MD, research instructor in neurosurgery, induced glaucoma in mice by tying off vessels that normally allow fluid to drain from the eye. This causes pressure in the eye to increase. Zhu then assessed how many cell bodies and axons of retinal ganglion cells were intact after three or 10 weeks.

The investigators found that normal mice lost an average of 30 percent of their retinal ganglion cell bodies after 10 weeks of glaucoma. But mice that received the preconditioning before glaucoma-inducing surgery lost only 3 percent of retinal ganglion cell bodies.

"We also showed that preconditioned mice lost significantly fewer retinal ganglion cell axons," Zhu says.

Gidday is currently investigating which genes are activated or repressed by preconditioning. He hopes to identify the changes in gene activity that make cells resistant to damage.

"Previous research has shown that there are literally hundreds of survival genes built into our DNA that are normally inactive," Gidday says. "When these genes are activated, the proteins they encode can make cells much less vulnerable to a variety of injuries."

Identifying specific survival genes should help scientists develop drugs that can activate them, according to Gidday.

Neurologists are currently conducting clinical trials to see if stress-induced tolerance can reduce brain damage after acute injuries like stroke, subarachnoid hemorrhage or trauma.

Gidday hopes his new finding will promote studies of tolerance's potential usefulness in animal models of Parkinson's disease, Alzheimer's disease and other neurodegenerative conditions.

"Neurons in the central nervous system appear to be hard-wired for survival," Gidday says. "This is one of the first steps in establishing a framework for how we can take advantage of that metaphorical wiring and use positive stress to help treat a variety of neurological diseases."

Zhu Y, Zhang L, Schmidt JF, Gidday JM. Glaucoma-induced degeneration of retinal ganglion cells prevented by hypoxic preconditioning: A model of "glaucoma tolerance." Molecular Medicine, published online.

This study was funded by the National Institutes of Health (NIH), the American Health Assistance Foundation, the National Glaucoma Foundation, the NIH Neuroscience Blueprint Core Grant and the Spastic Paralysis Research Foundation of the Illinois-Eastern Iowa District of Kiwanis International.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Observing the cell's protein factories during self-assembly
15.06.2018 | Charité - Universitätsmedizin Berlin

nachricht Scientists unravel molecular mechanisms of Parkinson's disease
13.06.2018 | The Francis Crick Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>