Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Point of care diagnostics' in the starting blocks

20.08.2008
Tracking down cancer at a very early stage, studying cell growth, developing new medicines: future lab-on-a-chip systems will use nanoscale electrical fields to enable the detection and manipulation of cells and biomolecules. The University of Twente’s eLab4Life project can expect a grant of 2.4 million euros from the European Research Council for this research.

Lab-on-a-chip systems bring the laboratory to the patient instead of the other way around: a blood sample will no longer have to go to the laboratory and the patient will no longer have to wait for the result; a pocket-sized laboratory that gives the result on the spot will soon be available.

This is called ‘point-of-care diagnostics’. According to Prof. Albert van den Berg, who leads the University of Twente’s BIOS Lab-on-a-chip group, a real breakthrough can be expected from making special nanoscale structures for generating electrical fields that can be used to study individual cells or molecules: “So far a lot of experiments have been carried out with optical techniques that are sometimes difficult to integrate in a complete system.

The new nanostructures we envisage will make it possible for us to miniaturize systems even further and to develop commercially-feasible equipment.”

Precise control

Amongst other things, he anticipates that this research will provide opportunities for developing extremely sensitive chips that can detect biomarkers for cancer at a very early stage, and thus enable better treatment. Van Den Berg also wants to study cell growth on the new chips. The advantage of miniaturization here is that the environment in which the cell grows can be controlled very precisely. This precision is a great advantage for the development of new medicines, too: the researchers want, for example, to allow two types of cells to fuse on a chip to form new cells that will produce medicines.

Spin-off

Van den Berg’s group, a unit of the MESA+ Institute for Nanotechnology, has built up a global reputation in this field. A chip has, for instance, already been developed that realizes point-of-care diagnostics for people who use the medicine lithium. The spin-off enterprise MediMate will be launching this development on the market in the near future. In the eLab4Life project the group will be working together with Prof. Jurriaan Huskens' Molecular Nanofabrication group and Prof. Clemens van Blitterswijk’s Tissue Regeneration group.

The European Research Council’s Advanced Grants are European subsidies for research that opens up new horizons. One hundred and five of almost a thousand applications in the field of Physical Sciences and Engineering have been awarded one of these grants. Nine of these winning projects are based in the Netherlands. Albert van den Berg’s eLab4Life project can expect 2.4 million euros.

Wiebe van der Veen | alfa
Further information:
http://www.utwente.nl

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>