Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Oil for the joints' offers hope for osteoarthritis sufferers

03.05.2013
A team of researchers led by a Boston University Biomedical Engineer has developed a new joint lubricant that could bring longer lasting relief to millions of osteoarthritis sufferers. The new synthetic polymer supplements synovial fluid, the natural lubricant in joints, and works better than comparable treatments currently available.

According to Boston University Professor of Biomedical Engineering Mark W. Grinstaff, the best fluid supplement now available offers temporary symptom relief but provides inadequate lubrication to prevent further degradation of the cartilage surfaces that cushion the joint.

To achieve both objectives, Grinstaff, Beth Israel Deaconess Medical Center/Harvard Medical School orthopedic surgeon Brian Snyder and a team of Boston University chemistry and engineering students, fellows and clinicians have advanced the first synthetic synovial fluid. They describe the unique polymer and its performance in Journal of the American Chemical Society.

The most common form of joint disease and a leading cause of disability in the elderly, osteoarthritis (OA) affects about 27 million Americans and 200 million people worldwide. Characterized by pain and swelling, the disease emerges in hand, hip, knee and other commonly used joints where degradation of cartilage and synovial fluid results in bone-on-bone abrasion. Treatments range from anti-inflammatory drugs to total joint replacement. While there's no cure for OA, one treatment—injection of a polymer to supplement synovial fluid in the joint—promises to relieve symptoms and slow the disease's progression by reducing wear on cartilage surfaces.

"From our studies, we know our biopolymer is a superior lubricant in the joint, much better than the leading synovial fluid supplement, and similar to healthy synovial fluid," said Grinstaff. "When we used this new polymer, the friction between the two cartilage surfaces was lower, resulting in less wear and surface-to-surface interaction. It's like oil for the joints."

Originally produced last year for another study, the new polymer mimics some of the properties of natural polysaccharides, large compounds that link repetitive sequences of sugar molecules in a chainlike pattern.

"You put it between your fingers, and it's slippery," Grinstaff observed. "Once we made it, we wondered if we could use it as a lubricant and where it would be useful. That's how we thought of using it as a potential treatment for OA."

Another advantage of the biopolymer is its large molecular weight or size, which prevents it from seeping out of the joint, enabling longer lasting cartilage protection. Unlike the leading synovial fluid supplement, which lasts one or two days, the new polymer remains in the joint for more than two weeks.

The research is supported by the Wallace H. Coulter Foundation and Flex Biomedical, a startup cofounded by Grinstaff and Snyder.

Michael Seele | EurekAlert!
Further information:
http://www.bu.edu

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>