Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Mini' transplant may reverse severe sickle cell disease

10.12.2009
Results of a preliminary study by scientists at the National Institutes of Health and Johns Hopkins show that "mini" stem cell transplantation may safely reverse severe sickle cell disease in adults.

The phase I/II study to establish safety of the procedure, published December 10 in the New England Journal of Medicine, describes 10 patients with severe sickle cell disease who received intravenous transplants of blood-forming stem cells. The transplanted stem cells came from the peripheral blood of healthy related donors matched to the patients' tissue types.

Using this procedure, nine of 10 patients treated have normal red blood cells and reversal of organ damage caused by the disease.

Jonathan Powell, M.D., Ph.D., associate professor at the Johns Hopkins Kimmel Cancer Center, says the intravenous transplant approach for sickle cell disease, caused by a single mutation in the hemoglobin gene, does not replace the defective gene, but transplants blood stem cells that carry the normal gene.

Sickle cell disease, named for the "deflated" sickle-shaped appearance of red blood cells in those with the disease, hinders the cells' ability to carry oxygen throughout the body. In severe cases, it causes stroke, severe pain, and damage to multiple organs, including the lungs, kidneys and liver.

All patients in the study, ranging in age from 16 to 45, were treated at the NIH with what researchers call a non-myeloablative or "mini" transplant, along with an immune-suppressing drug called rapamycin.

Conventional transplant methods use high doses of chemotherapy to wipe out the immune system before the transplanted cells are injected, a process that has many side effects, including serious bacterial and fungal infections, which may kill some patients. In mini-transplants, lower doses of medication and radiation are used to make room for the donor's cells, the new source for healthy red blood cells in the patient.

According to Powell, side effects, including low white blood cell counts, were few and very mild compared with conventional bone marrow transplantation. But in nine of the 10, donor cells now coexist with the patients' own cells. One patient was not able to maintain the transplanted cells long term.

Minitransplants for sickle cell disease were tested in patients almost a decade ago, but were unsuccessful because the patients' immune systems rejected the transplanted cells, according to Powell, but by employing the drug rapamcyin, he says this new approach promotes the coexistence of the host and donor cells.

Powell's earlier research in mice showed that rapamycin inhibits an enzymatic pathway that suppresses the immune system and makes the host and donor cells tolerant to each other.

The NIH/Johns Hopkins team is conducting further studies on immune cells gathered from patients in their study, and looking at a combination of rapamycin with a well-known cancer drug called cyclophosphamide.

Other teams at Johns Hopkins are studying the use of half-matched donors for transplants in sickle cell patients, helping to widen the pool of potential donors for stem cell transplantation.

Funding for the study was provided by the National Institute of Diabetes, Digestive, and Kidney Diseases and the National Heart, Lung and Blood Institute at the NIH.

Study authors at the NIH include principal investigator John Tisdale, as well as Matthew Hsieh, Elizabeth Kang, Courtney Fitzhugh, M. Beth Link, Roger Kurlander, Richard Childs, and Griffin Rodgers.

Vanessa Wasta | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.hopkinskimmelcancercenter.org

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>