Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Jailbreak' bacteria can trigger heart disease

06.09.2010
Plaque-causing bacteria can jailbreak from the mouth into the bloodstream and increase your risk of heart attack says a scientist at the Society for General Microbiology's autumn meeting in Nottingham.

Professor Howard Jenkinson, from the University of Bristol explains how oral bacteria can wreak havoc if they are not kept in check by regular brushing and flossing. "Poor dental hygiene can lead to bleeding gums, providing bacteria with an escape route into the bloodstream, where they can initiate blood clots leading to heart disease," he said.

Streptococcus bacteria commonly live in the mouth, confined within communities termed biofilms and are responsible for causing tooth plaque and gum disease. The University of Bristol researchers, in collaboration with scientists at the Royal College of Surgeons in Ireland (RCSI), have shown that once let loose in the bloodstream, Streptococcus bacteria can use a protein on their surface, called PadA, as a weapon to force platelets in the blood to bind together and form clots.

Inducing blood clots is a selfish trick used by bacteria, as Professor Jenkinson points out. "When the platelets clump together they completely encase the bacteria. This provides a protective cover not only from the immune system, but also from antibiotics that might be used to treat infection," he said. "Unfortunately, as well as helping out the bacteria, platelet clumping can cause small blood clots, growths on the heart valves (endocarditis), or inflammation of blood vessels that can block the blood supply to the heart and brain."

Professor Jenkinson said the research highlights a very important public health message. "People need to be aware that as well keeping a check on their diet, blood pressure, cholesterol and fitness levels, they also need to maintain good dental hygiene to minimise their risk of heart problems."

The team is using a brand-new blood flow model, developed by Dr Steve Kerrigan at the RCSI, School of Pharmacy, Dublin, that mimics conditions in the human circulatory system. "We are currently investigating how the platelet-activating function of PadA can be blocked. This could eventually lead to new treatments for cardiovascular disease which is the biggest killer in the developed world," said Professor Jenkinson.

Laura Udakis | EurekAlert!
Further information:
http://www.sgm.ac.uk

Further reports about: Jailbreak' PadA RCSI blood clots blood vessel dental hygiene

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

Information integration and artificial intelligence for better diagnosis and therapy decisions

24.05.2017 | Information Technology

CRTD receives 1.56 Mill. Euro BMBF-funding for retinal disease research

24.05.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>