Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Seeing X-Rays in a New Light: Soft X-Ray Detector Could Improve Breast Cancer Imaging

A slice of light is about to come into focus for the first time, thanks to a new X-ray detector constructed at the University of South Carolina. And according to Krishna Mandal, the associate professor of electrical engineering who led the team that built it, the detector offers tremendous potential in breast cancer detection and treatment.

“There’s nothing available on the market that covers this range of X-rays,” Mandal said. “Nobody has explored this region, and there will be many innovations that will result from our being able to do so, particularly when it comes to medical imaging.”

X-rays are part of the electromagnetic spectrum, which ranges from low-energy radio waves to high-energy gamma rays. X-rays are on the high-energy end of the spectrum, just below gamma rays – they’re more energetic than ultraviolet light, which is more energetic than visible light.

As they just reported in Applied Physics Letters, the USC engineers have developed a laboratory-scale device that sensitively detects what are called “soft X-rays” – those on the lowest end of the X-ray energy scale.

At the other end of the X-ray spectrum are hard X-rays. The typical “X-ray” taken at a doctor’s or dentist’s office is a black-and-white photograph showing where hard X-rays were able to penetrate (the black area) or unable to penetrate (the white area) the object between the X-ray source and detector.

“If you take mammography as an example, hard X-rays pose difficulties,” Mandal said. “First, they have very high energy, and so we have to minimize exposure to them.” Soft X-ray devices are potentially less harmful to patients than those based on hard X-rays, he said.

“And more importantly, the soft X-rays interact with calcifications in the tissue,” he added. “Hard X-rays do not – they just pass through calcium deposits.”

Calcification is the deposition of calcium minerals in body tissue; in the breast it can be an indicator of pathology. Not as opaque as bone to X-rays, calcium deposits represent an very promising target for detailed soft X-ray mapping, Mandal said. He envisions the new soft X-ray detectors being at the forefront of a new way of imaging breast tissue, so that physicians can follow progression of calcification over time.

“It’s common for women even under 40 years of age to have calcifications,” Mandal said. “It’s critical to know whether it exists in the tissue and especially whether it is spreading.”

“But to see that, we need very high resolution detection systems, which is what we’ve made. These detectors are instantaneous, real-time and will be able to operate at room temperature with high resolution.”

Mandal’s team constructed the detector through epitaxial growth of silicon carbide on wafers of 4H-SiC. They were tested for response to soft X-rays at both the Los Alamos National Laboratory and Brookhaven National Laboratory.

The resulting detectors exhibited high sensitivity for soft X-rays (50 to 10,000 electron volts). There are no commercially available soft X-ray detectors covering this range, Mandal said, and comparison with an off-the-shelf ultraviolet detector showed a much more robust response for soft X-rays with the new device.

Steven Powell | Newswise Science News
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>