Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing X-Rays in a New Light: Soft X-Ray Detector Could Improve Breast Cancer Imaging

09.08.2012
A slice of light is about to come into focus for the first time, thanks to a new X-ray detector constructed at the University of South Carolina. And according to Krishna Mandal, the associate professor of electrical engineering who led the team that built it, the detector offers tremendous potential in breast cancer detection and treatment.

“There’s nothing available on the market that covers this range of X-rays,” Mandal said. “Nobody has explored this region, and there will be many innovations that will result from our being able to do so, particularly when it comes to medical imaging.”

X-rays are part of the electromagnetic spectrum, which ranges from low-energy radio waves to high-energy gamma rays. X-rays are on the high-energy end of the spectrum, just below gamma rays – they’re more energetic than ultraviolet light, which is more energetic than visible light.

As they just reported in Applied Physics Letters, the USC engineers have developed a laboratory-scale device that sensitively detects what are called “soft X-rays” – those on the lowest end of the X-ray energy scale.

At the other end of the X-ray spectrum are hard X-rays. The typical “X-ray” taken at a doctor’s or dentist’s office is a black-and-white photograph showing where hard X-rays were able to penetrate (the black area) or unable to penetrate (the white area) the object between the X-ray source and detector.

“If you take mammography as an example, hard X-rays pose difficulties,” Mandal said. “First, they have very high energy, and so we have to minimize exposure to them.” Soft X-ray devices are potentially less harmful to patients than those based on hard X-rays, he said.

“And more importantly, the soft X-rays interact with calcifications in the tissue,” he added. “Hard X-rays do not – they just pass through calcium deposits.”

Calcification is the deposition of calcium minerals in body tissue; in the breast it can be an indicator of pathology. Not as opaque as bone to X-rays, calcium deposits represent an very promising target for detailed soft X-ray mapping, Mandal said. He envisions the new soft X-ray detectors being at the forefront of a new way of imaging breast tissue, so that physicians can follow progression of calcification over time.

“It’s common for women even under 40 years of age to have calcifications,” Mandal said. “It’s critical to know whether it exists in the tissue and especially whether it is spreading.”

“But to see that, we need very high resolution detection systems, which is what we’ve made. These detectors are instantaneous, real-time and will be able to operate at room temperature with high resolution.”

Mandal’s team constructed the detector through epitaxial growth of silicon carbide on wafers of 4H-SiC. They were tested for response to soft X-rays at both the Los Alamos National Laboratory and Brookhaven National Laboratory.

The resulting detectors exhibited high sensitivity for soft X-rays (50 to 10,000 electron volts). There are no commercially available soft X-ray detectors covering this range, Mandal said, and comparison with an off-the-shelf ultraviolet detector showed a much more robust response for soft X-rays with the new device.

Steven Powell | Newswise Science News
Further information:
http://www.sc.edu

More articles from Medical Engineering:

nachricht Skin patch dissolves 'love handles' in mice
18.09.2017 | Columbia University Medical Center

nachricht Medicine of the future: New microchip technology could be used to track 'smart pills'
13.09.2017 | California Institute of Technology

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>