Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

X-ray eyes bring us closer to early diagnosis of Parkinson's disease

16.02.2009
It is estimated that 4 million people world-wide are suffering from Parkinson's, a complex disease that varies greatly among affected individuals. Understanding the brain chemistry that leads to the onset of Parkinson's is vital if we are to develop methods for early MRI diagnosis and new treatments for this devastating disease.

Speaking at the AAAS Meeting in Chicago, Dr Joanna Collingwood, from Keele University, will present new results from studies carried out, in collaboration with Dr Mark Davidson from the University of Florida (UF), at Diamond - the UK's national synchrotron.

Their results show that the distribution of metal ions in the brain tissue of sufferers is altered by the disease process. By studying the tissue as a whole, it has been possible to map metal distribution throughout the brain region containing the vulnerable motor neurones in Parkinson's disease in a region where they had earlier shown that iron levels nearly double in individual cells [Oakley 2007]. The primary support for this research is provided by the Engineering and Physical Sciences Research Council (EPSRC) in the UK.

Dr Collingwood comments, "Our studies at Diamond involve a technique called microfocus spectroscopy, in which powerful, tightly focussed beams of X-rays penetrate our tissue samples. We have been able to investigate human tissue with such precision that metal ions, particularly iron levels, in and around individual cells can be mapped. What makes the microfocus synchrotron approach so unique is that we can also use the focussed beam to obtain information about the form in which the iron is stored. Thanks to several years of work on optimizing the tissue preparation method at the Materials Research Collaborative Access Team at the Advanced Photon Source (APS) led by Dr. Davidson and Drs. Jon Dobson, of Keele and Chris Batich of UF, the technique is pioneering in that it does not change the distribution or form of the metals in the tissue being studied. We are grateful to the National Institutes of Health (NIH) in the USA for supporting this vital work. The impact of tissue preparation on the metal ions has been overlooked in many research projects in this area to date".

"To move this research on into the clinical arena, we need to determine how much the contrast change seen by clinicians in the MRI scan results is directly due to changes in iron distribution and form. Improving our understanding of the biochemical aspects of the disease should in the long term contribute to improved therapeutic approaches and also provide potential openings for early MRI detection and diagnosis. Early diagnosis is key because we know that by the time a typical individual presents with the symptoms of the disease, chemical changes have already caused significant cell death of vulnerable motor neurones. We have been working closely with Dr. John Forder and Dr. Keith White at the Mcknight Brain Institute at UF to begin MRI studies of early diagnosis and translate the results from Diamond and the APS in Chicago into clinical relevance."

Due to the ageing of the world population, the importance of Parkinson's disease as a public health issue is expected increasing. The ultimate goal of this research is to find a method for early diagnosis so that medical treatment can begin as soon as chemical changes are detected and before the irreversible cell death takes place.

Treatment to remove or inactivate metals in the body is already available for people suffering from iron overload disorders, and is known as chelation therapy. As improvements in scanning techniques enable earlier detection of changes in the brain, it may be possible to diagnose Parkinson's disease much earlier and, with further advances in therapeutic research, find chelation-based therapeutic approaches for patients to intervene before they experience irreversible levels of cell loss. In the case of Parkinson's disease, a more targeted approach is necessary, as the overall systemic iron levels are not elevated. Rather, local regions affected by the disease are involved, making the knowledge obtained by the synchrotron techniques more critical to the design of appropriate treatments.

Sarah Bucknall | EurekAlert!
Further information:
http://www.diamond.ac.uk
http://www.keele.ac.uk/research/istm/
http://www.ufl.edu

More articles from Medical Engineering:

nachricht XXL computed tomography: a new dimension in X-ray analysis
17.05.2018 | Fraunhofer-Gesellschaft

nachricht Why we need erasable MRI scans
26.04.2018 | California Institute of Technology

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>