World-first to predict premature births

Australian researchers and a pathology company have joined forces to develop a world-first computerised system which may reveal a way to predict premature birth with greater accuracy.

The University of Melbourne, the University of Newcastle and Symbion Pathology are combining expertise in medical research, engineering and pathology to develop a computer program to predict women at risk of a premature birth.

About 17,000 pre-term births occur in Australia each year. Premature birth is responsible for 70 per cent of new born baby deaths and 50 per cent of cerebral palsy cases.

According to Professor Roger Smith from the University of Newcastle*, identifying patterns in hormone levels could be the key to determining high risk pregnancies.

“The mechanisms that regulate the onset of human labour are still unknown, which makes it difficult to predict the event. However by detecting patterns in hormone levels, we could see when a pregnancy was going 'off course',” said Professor Smith.

“This would identify women who may benefit from medical treatments currently available to prevent premature birth.”

Professor David Smith from the Melbourne School of Engineering at the University of Melbourne recently received an Australian Research Council (ARC) Linkage Grant of $390,000 to fund the project for three years.

“We are creating software and other computational methods to analyse pathology samples, determine patterns in blood hormone levels, and display the results,” Professor David Smith said. “The program will not only identify women at risk of giving birth early – it will also identify women not at risk, who could have their pregnancies managed by midwives in hospital or a home birth setting.”

Researchers hope to have the computer program fully developed in three years. Once completed, it will be tested by Professor Roger Smith and his team at John Hunter Hospital. Both researchers paid tribute to Symbion Pathology, whose support has allowed this research.

“Symbion Pathology's backing has been critical to this project. Symbion has provided equipment, personnel and test results, which have enabled us to develop early findings and attract funding through ARC Linkage Grant scheme,” Professor Roger Smith said.

Media Contact

Janine Sim-Jones EurekAlert!

More Information:

http://www.unimelb.edu.au

All latest news from the category: Medical Engineering

The development of medical equipment, products and technical procedures is characterized by high research and development costs in a variety of fields related to the study of human medicine.

innovations-report provides informative and stimulating reports and articles on topics ranging from imaging processes, cell and tissue techniques, optical techniques, implants, orthopedic aids, clinical and medical office equipment, dialysis systems and x-ray/radiation monitoring devices to endoscopy, ultrasound, surgical techniques, and dental materials.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors