Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wireless Sensor Transmits Tumor Pressure

22.09.2014

Novel technology could one day help determine optimal window for cancer treatment

The interstitial pressure inside a tumor is often remarkably high compared to normal tissues and is thought to impede the delivery of chemotherapeutic agents as well as decrease the effectiveness of radiation therapy. While medications exist that temporarily decrease tumor pressure, identifying the optimal window to initiate treatment—when tumor pressure is lowest—remains a challenge. With support from NIBIB, researchers at Purdue University have developed a novel sensor that can wirelessly relay pressure readings from inside a tumor.


Babak Ziaie, PhD, Purdue University

Wireless interstitial fluid pressure sensor shown to scale on a dime.

Contents under Pressure

Tumors, like healthy tissues, need oxygen and nutrients to survive. In order to accommodate the demands of a growing tumor, blood vessels from surrounding tissue begin to grow into the tumor. Yet, unlike normal tissue, these newly formed blood vessels are disorganized, twisty, and leaky. It’s thought that the high pressure observed in tumors is a result of these abnormal blood vessels, which leak fluid and proteins into the area between tumor cells, known as the interstitial space.

In normal tissues, tightly regulated differences in pressure pull nutrients out of a tissue’s blood vessels and into the interstitial space, where they can be taken up by cells. Medications travelling through the blood also rely on these pressure differences in order to reach cells. When pressure in the interstitial space increases—as is the case in many tumors—medications are less apt to leave blood vessels. As a result, patients who have tumors with high interstitial pressure often receive a less than adequate dose of chemotherapy or other types of anti-cancer drugs. In addition, high interstitial pressure can also contribute to low oxygen levels in tumors. Because radiation therapy requires the presence of oxygen to be effective, tumors with high interstitial pressure are often less receptive to radiation therapy.

Window of Opportunity

Results from recent clinical trials and studies in animals suggest that a class of anti-cancer drugs called angiogenesis inhibitors may be able to temporarily reduce interstitial pressure and improve the efficacy of chemotherapy and radiation treatments. Angiogenesis inhibitors prevent the growth of new blood vessels and have long been investigated as a way to stop tumor growth. Recently, it has been hypothesized that there is a brief window after these drugs are given in which blood flow to tumors is actually normalized. This window provides an opportunity to more efficiently deliver chemotherapeutic drugs and radiation therapy.

However, because efficient methods for measuring interstitial tumor pressure are lacking, determining the optimal time to begin chemotherapy or radiation treatment within this normalization window remains a challenge.

“Right now, the only option for measuring pressure is to stick a needle inside the tumor. That’s not practical for clinical applications,” says Babak Ziaie, Ph.D, director of the Biomedical Microdevices Laboratory at Purdue University.

A Wireless Pressure Sensor

After conversations with radiation oncologists with whom he collaborates, Ziaie decided to take on the challenge of creating a tumor pressure sensor. He was enticed by the novelty of the project. “No one had done this before,” said Ziaie. “No one was working on it or even attempting it.”

With support from NIBIB, Ziaie and his research team created a novel sensor that can be implanted into a tumor to wirelessly transmit interstitial fluid pressure readings. The sensor is an adaptation of a technology developed in the 1950s called the Guyton capsule, which is a perforated capsule that, once implanted, allows interstitial fluid to flow through it. Subsequent insertion of a needle into the capsule provides direct access to the interstitial fluid for pressure measurements.

Using special microfabrication techniques, Ziaie created a miniaturized wireless pressure sensor and combined it with a Guyton-like capsule so that it could generate interstitial pressure readings without the use of a needle and that could be read remotely.

Recently, Ziaie and his team tested the device by implanting it into pancreatic tumors in mice and were able to show a decrease in interstitial tumor pressure following administration of an angiogenic inhibitor.

“This is a great example of the power of convergence science,” said Tiffani Lash, PhD, program director for sensor technologies at NIBIB. “Integrating knowledge from the life and physical sciences with engineering concepts can help solve important clinical problems. It’s about thinking creatively to generate novel ways to treat disease.”

Margot Kern
Writer/Editor
nibibpress@mail.nih.gov
Phone: 301-496-3500

Margot Kern | newswise

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>