Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why we need erasable MRI scans

26.04.2018

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is through the use of contrast agents--magnetic dyes injected into the blood or given orally to patients that then travel to organs and tissues, making them easier to see. Recently, researchers have begun to develop next-generation contrast agents, such as magnetic nanoparticles, that can be directed specifically to sites of interest, such as tumors.


Caltech's Mikhail Shapiro and his colleagues have developed "erasable" MRI contrast agents that can blink off on command with ultrasound technology. As illustrated here, the contrast agents -- which consist of air-filled protein structures called gas vesicles -- give off magnetic signals. When hit with waves of sound, the gas vesicles collapse and their signals go away. This makes it easier for researchers to interpret MRI scans.

Credit: Barth van Rossum for Caltech

But there remains a problem with many of these agents: they are sometimes difficult to distinguish from our bodies' tissues, which give off their own MRI signals. For example, a researcher reading an MRI scan may not know with certainty if a dark patch near a tumor represents a contrast agent bound to the tumor, or is an unrelated signal from surrounding tissue.

Caltech's Mikhail Shapiro, assistant professor of chemical engineering, thinks he has a solution. He and his team are working on "erasable" contrast agents that would have the ability to blink off, on command, thereby revealing their location in the body.

... more about:
»MRI »MRI scans »contrast agent »vesicles

"We're developing MRI contrast agents that can be erased with ultrasound, allowing you to turn them off," says Shapiro, who is also a Schlinger Scholar and Heritage Medical Research Institute Investigator. "It's the same principle behind blinking bicycle lights. Having the lights turn on and off makes them easier to see, only in our case we just blink off the contrast agent once."

The new research was published in the February 26 advanced issue of Nature Materials, and is on the cover of the May print edition out this month. The lead author is George Lu, a postdoctoral scholar in Shapiro's lab.

"Clearly visualizing MRI contrast agents is a longtime, lingering problem in the field," says Lu. "With our new study, we are showing how it could be possible to erase the contrast agent, making it much easier to read MRI scans properly."

The new technology relies on nanoscale structures called gas vesicles, which are naturally produced by some microbes. Gas vesicles consist of a protein shell with a hollow interior and are used by the microbes as flotation devices to regulate access to light and nutrients. Previously, Shapiro and his colleagues demonstrated how gas vesicles could someday enable imaging of therapeutic bacteria and other cells in people's bodies using ultrasound. The idea would be to engineer cells of interest--such as bacterial cells used to treat gut conditions--to produce the gas vesicles. Because the hollow chambers of the vesicles bounce back sound waves in distinctive ways, the vesicles (and the cells producing them) would be easy to distinguish from surrounding tissue.

It turns out that the gas vesicles also stand out in MRI scans because the air in their chambers reacts differently to magnetic fields compared to the aqueous tissues around them. This results in a local darkening of MRI images where the gas vesicles are present.

In the new study, performed in mice, the researchers showed that gas vesicles could indeed be used as MRI contrast agents--the gas vesicles were detected in certain tissues and organs, such as the brain and liver. What's more, the gas vesicles could be turned off. When hit with ultrasound waves of a high enough pressure, the cylindrical structures "collapsed like crushed soda cans," Shapiro says, and their magnetic signals went away.

Previous studies of gas vesicles have shown that these protein structures can be genetically modified to target receptors on specific cells, such as tumor cells. Populations of gas vesicles can also be engineered differently--for example, one group might target a tumor while another would stay in the blood stream to outline blood vessels. This would allow doctors and researchers to visualize two types of tissue at once.

"We have previously shown that we can genetically engineer the gas vesicles in a variety of ways for use in ultrasound imaging," says Shapiro. "Now they have a whole new application in MRI."

###

The Nature Materials study, titled "Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures," was funded by the National Institutes of Health, the Natural Sciences and Engineering Research Council of Canada, the National Science Foundation, the Dana Foundation, a Burroughs Wellcome Career Award at the Scientific Interface, a Packard Fellowship in Science and Engineering, and the Heritage Medical Research Institute. Other Caltech-affiliated authors are Arash Farhadi, Jerzy O. Szablowski (PhD '15), Audrey Lee-Gosselin, Anupama Lakshmanan, and Raymond W. Bourdeau. Samuel R. Barnes from Loma Linda University is also an author.

Media Contact

whitney clavin
wclavin@caltech.edu
626-395-1856

 @caltech

http://www.caltech.edu 

whitney clavin | EurekAlert!

Further reports about: MRI MRI scans contrast agent vesicles

More articles from Medical Engineering:

nachricht Surgery involving ultrasound energy found to treat high blood pressure
24.05.2018 | Queen Mary University of London

nachricht XXL computed tomography: a new dimension in X-ray analysis
17.05.2018 | Fraunhofer-Gesellschaft

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>