Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wearable Electronics Demonstrate Promise of Brain-Machine Interfaces

16.08.2011
Research conducted by a new member of the bioengineering faculty at the University of California, San Diego has demonstrated that a thin flexible, skin-like device, mounted with tiny electronic components, is capable of acquiring electrical signals from the brain and skeletal muscles and potentially transmitting the information wirelessly to an external computer.

The development, published Aug. 12 in the journal Science, means that in the future, patients struggling with reduced motor or brain function, or research subjects, could be monitored in their natural environment outside the lab. For example, a person who struggles with epilepsy could wear the device to monitor for signs of oncoming seizures.

It also opens up a slew of previously unimaginable possibilities in the field of brain-machine interfaces well beyond biomedical applications, said Professor Todd Coleman, who joined the Department of Bioengineering at the UC San Diego Jacobs School of Engineering this summer. Until now, Coleman said, this brain-machine interface has been limited by the clunky, artificial coupling required by a vast array of electronic components and devices.

“The brain-machine interface paradigm is very exciting and I think it need not be limited to thinking about prosthetics or people with some type of motor deficit,” said Coleman. “I think taking the lens of the human and computer interacting, and if you could evolve a very nice coupling that is remarkably natural and almost ubiquitous, I think there are applications that we haven’t even imagined. That is what really fascinates me – really the coupling between the biological system and the computer system.”

Coleman co-led the multidisciplinary team that developed the device while working as a professor of electrical and computer engineering and neuroscience at the University of Illinois last year. The device is made of a thin sheet of plastic covered with a water-soluble layer that sticks to skin after washing with water. Once applied, the plastic dissolves, leaving the electronic components imprinted into the skin like a temporary tattoo.

Coleman said he had been thinking about how to record brain and muscle electrical signals in a way that doesn’t limit the subject’s ability to move about in a natural setting when he saw a presentation by University of Illinois engineering professor John Rogers, who developed the flexible electronic device. Currently, electrical signals from the brain and skeletal muscle are collected through electroencephalography (EEG) and electromyography (EMG), respectively. EEG and EMG diagnostics involve mounting plastic electrodes to the body with adhesives or clamps, applying a conductive gel and attaching it all to boxes of circuit boards, power supplies and communications devices. EEGs and EMGs also typically require a person to be monitored in a lab setting, removing them from the rich and dynamic environments in which they normally operate. The research team showed that a wide array of electrical components, including sensors, transistors, power supplies such as solar cells and wireless antennas, could be combined on a single device that is nearly unnoticeable by the wearer.

In addition to Rogers, who was the main enabler of the technology with his expertise in stretchable electronics, the project was led by Northwestern University Mechanical Engineering Professor Yonggang Huang, who optimized the mechanical properties of the device, and Coleman, who helped define and demonstrate the utility of the device in biomedical applications. Coleman’s research group, with combined backgrounds in electrical engineering and neuroscience, helped in the circuit design for active electrodes to enable efficient coupling between the device and brain waves without the need for a conductive gel, and in the statistical signal processing required to reliably acquire the neural signals from the brain or muscles through Rogers’ device. For example, Coleman’s research group used the device to enable someone to control a computer game with muscles in his throat by speaking the commands. In principle, the same function could have been achieved by simply mouthing commands rather than speaking them out loud. This was done by applying a pattern-recognition algorithm implemented by Coleman’s group to data taken from a throat-based EMG. Now that the capability has been demonstrated, the next step is to integrate all the components onto a single device. Coleman believes the ramifications for health care are significant at a time when people are living longer but suffering more neurological problems like Parkinson’s disease and dementia.

“If you think about the advances that are being made in artificial hips and rehabilitation and the fact that people are living longer, it is no longer the case that your body is giving up before your mind,” said Coleman. “It’s going to be increasingly the case that we need to think about fixing minds along with fixing bodies.”

What’s Possible When Brains and Computers Work Together?
Understanding the performance capabilities that could be achieved by an efficient union between brains and machines is a central theme of Coleman’s research and he envisions endless applications in areas such as military operations, gaming, education and consumer electronics. For example, the ability to communicate with a computer without actually verbalizing your message out loud clearly benefits patients with muscular or neurological disorders such as amyothropic lateral sclerosis, also known as Lou Gehrig’s disease. But its discrete tattoo-like appearance makes it useful for covert military operations requiring the operator to communicate with a remote command station. In this scenario, the operator could mouth what he needs to say using the muscles in his throat to transmit an electrical signal.

At UC San Diego, Coleman is exploring what other capabilities could be achieved by the coupling of brain signals with computers, enabling two decision makers to cooperate to achieve a common goal. For example, by simultaneously acquiring the neural signals of many people collaborating with computers, this technology could enable the whole group to operate as a team with enhanced capabilities.

“Ideally, you want them to cooperate to achieve a common goal and new theoretical approaches are needed to optimize the nature of their interaction. What is also crucially important is designing an effective interface between the brain and the machine where this neurosignal acquisition takes place,” said Coleman. “So if you can develop a better interface so that you can get a richer class of signals, you could potentially achieve levels of performance that cannot be attained otherwise.”

The research was funded by the National Science Foundation and the Air Force Research Laboratory.

Catherine Hockmuth | Newswise Science News
Further information:
http://www.ucsd.edu

More articles from Medical Engineering:

nachricht A Challenging European Research Project to Develop New Tiny Microscopes
28.03.2017 | Technische Universität Braunschweig

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>