Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wearable defibrillator can prevent death in people with arrhythmias

14.11.2011
A wearable defibrillator can prevent sudden death in people with dangerous heart arrhythmias, according to research presented at the American Heart Association's Scientific Sessions 2011.

Wearable cardioverter defibrillators are used by people who may be at higher risk for sudden cardiac arrest, including those with weakened heart function, awaiting cardiac transplant or with a condition that prevents or delays them from receiving an implanted defibrillator.

The device monitors heart rhythm, emits alarms if a serious arrhythmia occurs, delivers an electric shock to the heart if needed and alerts bystanders to help if the heart's electrical activity has stopped.

About 5,000 patients are using wearable defibrillators at any one time, usually for about 60 days, said Vincent N. Mosesso Jr., M.D., professor of emergency medicine at the University of Pittsburgh School of Medicine and principal investigator of the study.

"In these patients, the wearable defibrillator is a non-invasive 'insurance policy' against sudden arrest during their vulnerable period," he said.

Researchers gathered heart rhythm records and calls about shocks from a registry of 14,475 patients with wearable defibrillators listed from 2007 through 2009. Of those, 185 (about 1 percent) received an appropriate shock and 91.6 percent survived one or more episodes of ventricular fibrillation or ventricular tachycardia, the most common abnormal rhythms during cardiac arrest.

Wearable defibrillators delivered 223 inappropriate shocks to 213 people who weren't experiencing ventricular fibrillation or ventricular tachycardia. However, no one died as a result. Researchers attribute the inappropriate shocks to signal noise, rapid non-VT rhythms, and rhythm misinterpretation.

Only about 7 percent of people in the United States who have sudden cardiac arrest outside the hospital survive to hospital discharge, and only about 21 percent who have them in the hospital survive to discharge.

"This study confirms the effectiveness of very early defibrillation as therapy for sudden cardiac arrest in high-risk patients when delivered by a wearable defibrillator," Mosesso said. "These defibrillators provide patients the critical advantage of not having to wait for a bystander or emergency responder to recognize the cardiac arrest and use an automated external defibrillator or manual defibrillator — both of which can lead to delays in treatment and markedly worse survival rates."

Co-authors are: Jie Li, M.S.; Douglas Landsittel, Ph.D. and Leonard I. Ganz, M.D. Author disclosures are on the abstract.

ZOLL LifeCor of Pittsburgh, which makes the wearable defibrillator used in the study, funded the research.

Statements and conclusions of study authors that are presented at American Heart Association scientific meetings are solely those of the study authors and do not necessarily reflect association policy or position. The association makes no representation or warranty as to their accuracy or reliability. The association receives funding primarily from individuals; foundations and corporations (including pharmaceutical, device manufacturers and other companies) also make donations and fund specific association programs and events. The association has strict policies to prevent these relationships from influencing the science content. Revenues from pharmaceutical and device corporations are available at www.heart.org/corporatefunding.

AHA News Media Office | EurekAlert!
Further information:
http://www.heart.org/corporatefunding

More articles from Medical Engineering:

nachricht Medical gamma-ray camera is now palm-sized
23.05.2017 | Waseda University

nachricht Computer accurately identifies and delineates breast cancers on digital tissue slides
11.05.2017 | Case Western Reserve University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>