Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virginia Tech biomedical engineer pursues development of 5-D imaging technology

29.01.2014
Currently, the medical community has limited ability in clinically assessing blockages called atherosclerotic plaques in the human body.

These dangerous blockages that can lead to heart attacks and strokes are not easily diagnosed due to "the lack of noninvasive imaging techniques to accurately model atherosclerotic plaques in vivo," said Guohua Cao (http://www.sbes.vt.edu/cao.php), assistant professor of biomedical engineering at Virginia Tech.

With the award of a National Science Foundation CAREER grant valued at $400,000, Cao is currently working on developing an unprecedented, 5-D micro-computer tomography scanner for the in vivo imaging of atherosclerotic plaques in transgenic mouse models.

"Our innovative approach is to combine three separately developed technologies into one synergistic imaging system," Cao explained.

Cao and other researchers in his field of study have made such improvements in multiple types of imaging technologies that great improvements in medical knowledge have been verified in long-term studies of human disease in mice and rats.

However, "of all the imaging tasks involved with small animals, cardiovascular imaging is among the most challenging because the physiological motions of small animals are about ten times faster than those of humans," Cao said.

Cao, who spent six years as a research assistant professor and a postdoctoral scholar and fellow at Brown University and at the University of North Carolina at Chapel Hill before joining the Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, previously led a multidisciplinary team from the fields of physics, biomedical engineering, applied sciences, and radiology on the development of a carbon nanotube dynamic micro-computed tomography (CT) scanner.

This scanner (http://www.nature.com/news/2009/090728/full/news.2009.744.html#B1) is currently considered one of the world's best in obtaining dynamic high spatial and temporal resolution CT images of small animals.

Cao has built two such state-of-art CT scanners for the biomedical researcher community. One is installed at the UNC Biomedical Research Imaging Center, and the other is at the Department of Radiology at the University of Iowa Carver College of Medicine.

With his new NSF CAREER award, he now hopes to develop a carbon-nanotube field emission X-ray source to reduce the blurring of pictures that comes from the heart motions and to achieve the required time-based high resolution. His proposal calls for the integration of this specific type of X-ray with an energy-sensitive photon counting X-ray detector to develop his novel system.

Cao's previous work on developing carbon nanotube X-ray technologies has been featured in the popular press, such as in Nature, The Economist, Technology Review, Discovery News, and German Public Radio.

Cao is working on this project with Ge Wang of Rensselaer Polytechnic Institute and formerly of Virginia Tech. Both Wang and Cao are developing new medical imaging technologies that hold promise for improved early disease screening, cancer staging, therapeutic assessment, and other aspects of personalized medicine.

Cao has established the X-Ray Systems Laboratory (http://www.sbes.vt.edu/cao/,) and acts as the director for the SBES Advanced Multi-scale CT (SAM-CT) Laboratory (http://www.imaging.sbes.vt.edu/research/sam-ct/). The X-ray Systems Lab has two custom-built CT imaging systems - a DynaTom CNT micro-CT scanner, and a bench-top Xplorer micro-CT. The SAM-CT Lab houses four commercial CT imaging systems.

Together, they provide image resolution from 500 micrometers down to 50 nanometers, and sample size from 100 micrometers up to 100 millimeters, enabling biomedical discovery on a range of objects from a single cell to an adult rat. They represent the state-of-the-art in X-ray imaging capability at the university setting around the world.

Cao received his bachelor's degree from the University of Science and Technology of China and his doctoral degree from Brown University.

The College of Engineering (http://www.eng.vt.edu/) at Virginia Tech is internationally recognized for its excellence in 14 engineering disciplines and computer science.

The college's 6,000 undergraduates benefit from an innovative curriculum that provides a "hands-on, minds-on" approach to engineering education, complementing classroom instruction with two unique design-and-build facilities and a strong Cooperative Education Program. With more than 50 research centers and numerous laboratories, the college offers its 2,000 graduate students opportunities in advanced fields of study such as biomedical engineering, state-of-the-art microelectronics, and nanotechnology. Virginia Tech, the most comprehensive university in Virginia, is dedicated to quality, innovation, and results to the commonwealth, the nation, and the world.

Related Links
• Scanning innovation can improve personalized medicine (http://www.vtnews.vt.edu/articles/2012/11/112712-engineering-scanninginnovation.html)
This story can be found on the Virginia Tech News website:
http://www.vtnews.vt.edu/articles/2014/01/012914-engineering-guohuacaonsf.html

Lynn A. Nystrom | VT News
Further information:
http://www.vt.edu

More articles from Medical Engineering:

nachricht Siemens Healthcare presents syngo.via RT Image Suite software solution
24.04.2015 | Siemens AG

nachricht Vanderbilt Team First to Blend High-End Imaging Techniques
17.03.2015 | Vanderbilt University Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

Im Focus: NOAA, Tulane identify second possible specimen of 'pocket shark' ever found

Pocket sharks are among the world's rarest finds

A very small and rare species of shark is swimming its way through scientific literature. But don't worry, the chances of this inches-long vertebrate biting...

Im Focus: Drexel materials scientists putting a new spin on computing memory

Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits into place to encode data.

Unfortunately, the same drawbacks and perils of the mechanical sketch board have been just as pervasive in computing: making a change often requires starting...

Im Focus: Exploding stars help to understand thunderclouds on Earth

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was discovered, more or less by coincidence, that cosmic rays provide suitable probes to measure electric fields within thunderclouds. This surprising finding is published in Physical Review Letters on April 24th. The measurements were performed with the LOFAR radio telescope located in the Netherlands.

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was...

Im Focus: On the trail of a trace gas

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

Electrons Move Like Light in Three-Dimensional Solid

24.04.2015 | Materials Sciences

Connecting Three Atomic Layers Puts Semiconducting Science on Its Edge

24.04.2015 | Materials Sciences

Understanding the Body’s Response to Worms and Allergies

24.04.2015 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>