Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virginia Tech biomedical engineer pursues development of 5-D imaging technology

29.01.2014
Currently, the medical community has limited ability in clinically assessing blockages called atherosclerotic plaques in the human body.

These dangerous blockages that can lead to heart attacks and strokes are not easily diagnosed due to "the lack of noninvasive imaging techniques to accurately model atherosclerotic plaques in vivo," said Guohua Cao (http://www.sbes.vt.edu/cao.php), assistant professor of biomedical engineering at Virginia Tech.

With the award of a National Science Foundation CAREER grant valued at $400,000, Cao is currently working on developing an unprecedented, 5-D micro-computer tomography scanner for the in vivo imaging of atherosclerotic plaques in transgenic mouse models.

"Our innovative approach is to combine three separately developed technologies into one synergistic imaging system," Cao explained.

Cao and other researchers in his field of study have made such improvements in multiple types of imaging technologies that great improvements in medical knowledge have been verified in long-term studies of human disease in mice and rats.

However, "of all the imaging tasks involved with small animals, cardiovascular imaging is among the most challenging because the physiological motions of small animals are about ten times faster than those of humans," Cao said.

Cao, who spent six years as a research assistant professor and a postdoctoral scholar and fellow at Brown University and at the University of North Carolina at Chapel Hill before joining the Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, previously led a multidisciplinary team from the fields of physics, biomedical engineering, applied sciences, and radiology on the development of a carbon nanotube dynamic micro-computed tomography (CT) scanner.

This scanner (http://www.nature.com/news/2009/090728/full/news.2009.744.html#B1) is currently considered one of the world's best in obtaining dynamic high spatial and temporal resolution CT images of small animals.

Cao has built two such state-of-art CT scanners for the biomedical researcher community. One is installed at the UNC Biomedical Research Imaging Center, and the other is at the Department of Radiology at the University of Iowa Carver College of Medicine.

With his new NSF CAREER award, he now hopes to develop a carbon-nanotube field emission X-ray source to reduce the blurring of pictures that comes from the heart motions and to achieve the required time-based high resolution. His proposal calls for the integration of this specific type of X-ray with an energy-sensitive photon counting X-ray detector to develop his novel system.

Cao's previous work on developing carbon nanotube X-ray technologies has been featured in the popular press, such as in Nature, The Economist, Technology Review, Discovery News, and German Public Radio.

Cao is working on this project with Ge Wang of Rensselaer Polytechnic Institute and formerly of Virginia Tech. Both Wang and Cao are developing new medical imaging technologies that hold promise for improved early disease screening, cancer staging, therapeutic assessment, and other aspects of personalized medicine.

Cao has established the X-Ray Systems Laboratory (http://www.sbes.vt.edu/cao/,) and acts as the director for the SBES Advanced Multi-scale CT (SAM-CT) Laboratory (http://www.imaging.sbes.vt.edu/research/sam-ct/). The X-ray Systems Lab has two custom-built CT imaging systems - a DynaTom CNT micro-CT scanner, and a bench-top Xplorer micro-CT. The SAM-CT Lab houses four commercial CT imaging systems.

Together, they provide image resolution from 500 micrometers down to 50 nanometers, and sample size from 100 micrometers up to 100 millimeters, enabling biomedical discovery on a range of objects from a single cell to an adult rat. They represent the state-of-the-art in X-ray imaging capability at the university setting around the world.

Cao received his bachelor's degree from the University of Science and Technology of China and his doctoral degree from Brown University.

The College of Engineering (http://www.eng.vt.edu/) at Virginia Tech is internationally recognized for its excellence in 14 engineering disciplines and computer science.

The college's 6,000 undergraduates benefit from an innovative curriculum that provides a "hands-on, minds-on" approach to engineering education, complementing classroom instruction with two unique design-and-build facilities and a strong Cooperative Education Program. With more than 50 research centers and numerous laboratories, the college offers its 2,000 graduate students opportunities in advanced fields of study such as biomedical engineering, state-of-the-art microelectronics, and nanotechnology. Virginia Tech, the most comprehensive university in Virginia, is dedicated to quality, innovation, and results to the commonwealth, the nation, and the world.

Related Links
• Scanning innovation can improve personalized medicine (http://www.vtnews.vt.edu/articles/2012/11/112712-engineering-scanninginnovation.html)
This story can be found on the Virginia Tech News website:
http://www.vtnews.vt.edu/articles/2014/01/012914-engineering-guohuacaonsf.html

Lynn A. Nystrom | VT News
Further information:
http://www.vt.edu

More articles from Medical Engineering:

nachricht Using 'Pacemakers' in spinal cord injuries
12.02.2016 | Charité – Universitätsmedizin Berlin

nachricht Fraunhofer ITEM takes over and continues development of inhalation technology assets from Takeda
10.02.2016 | Fraunhofer Institute for Toxicology and Experimental Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>