Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virginia Tech biomedical engineer pursues development of 5-D imaging technology

29.01.2014
Currently, the medical community has limited ability in clinically assessing blockages called atherosclerotic plaques in the human body.

These dangerous blockages that can lead to heart attacks and strokes are not easily diagnosed due to "the lack of noninvasive imaging techniques to accurately model atherosclerotic plaques in vivo," said Guohua Cao (http://www.sbes.vt.edu/cao.php), assistant professor of biomedical engineering at Virginia Tech.

With the award of a National Science Foundation CAREER grant valued at $400,000, Cao is currently working on developing an unprecedented, 5-D micro-computer tomography scanner for the in vivo imaging of atherosclerotic plaques in transgenic mouse models.

"Our innovative approach is to combine three separately developed technologies into one synergistic imaging system," Cao explained.

Cao and other researchers in his field of study have made such improvements in multiple types of imaging technologies that great improvements in medical knowledge have been verified in long-term studies of human disease in mice and rats.

However, "of all the imaging tasks involved with small animals, cardiovascular imaging is among the most challenging because the physiological motions of small animals are about ten times faster than those of humans," Cao said.

Cao, who spent six years as a research assistant professor and a postdoctoral scholar and fellow at Brown University and at the University of North Carolina at Chapel Hill before joining the Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, previously led a multidisciplinary team from the fields of physics, biomedical engineering, applied sciences, and radiology on the development of a carbon nanotube dynamic micro-computed tomography (CT) scanner.

This scanner (http://www.nature.com/news/2009/090728/full/news.2009.744.html#B1) is currently considered one of the world's best in obtaining dynamic high spatial and temporal resolution CT images of small animals.

Cao has built two such state-of-art CT scanners for the biomedical researcher community. One is installed at the UNC Biomedical Research Imaging Center, and the other is at the Department of Radiology at the University of Iowa Carver College of Medicine.

With his new NSF CAREER award, he now hopes to develop a carbon-nanotube field emission X-ray source to reduce the blurring of pictures that comes from the heart motions and to achieve the required time-based high resolution. His proposal calls for the integration of this specific type of X-ray with an energy-sensitive photon counting X-ray detector to develop his novel system.

Cao's previous work on developing carbon nanotube X-ray technologies has been featured in the popular press, such as in Nature, The Economist, Technology Review, Discovery News, and German Public Radio.

Cao is working on this project with Ge Wang of Rensselaer Polytechnic Institute and formerly of Virginia Tech. Both Wang and Cao are developing new medical imaging technologies that hold promise for improved early disease screening, cancer staging, therapeutic assessment, and other aspects of personalized medicine.

Cao has established the X-Ray Systems Laboratory (http://www.sbes.vt.edu/cao/,) and acts as the director for the SBES Advanced Multi-scale CT (SAM-CT) Laboratory (http://www.imaging.sbes.vt.edu/research/sam-ct/). The X-ray Systems Lab has two custom-built CT imaging systems - a DynaTom CNT micro-CT scanner, and a bench-top Xplorer micro-CT. The SAM-CT Lab houses four commercial CT imaging systems.

Together, they provide image resolution from 500 micrometers down to 50 nanometers, and sample size from 100 micrometers up to 100 millimeters, enabling biomedical discovery on a range of objects from a single cell to an adult rat. They represent the state-of-the-art in X-ray imaging capability at the university setting around the world.

Cao received his bachelor's degree from the University of Science and Technology of China and his doctoral degree from Brown University.

The College of Engineering (http://www.eng.vt.edu/) at Virginia Tech is internationally recognized for its excellence in 14 engineering disciplines and computer science.

The college's 6,000 undergraduates benefit from an innovative curriculum that provides a "hands-on, minds-on" approach to engineering education, complementing classroom instruction with two unique design-and-build facilities and a strong Cooperative Education Program. With more than 50 research centers and numerous laboratories, the college offers its 2,000 graduate students opportunities in advanced fields of study such as biomedical engineering, state-of-the-art microelectronics, and nanotechnology. Virginia Tech, the most comprehensive university in Virginia, is dedicated to quality, innovation, and results to the commonwealth, the nation, and the world.

Related Links
• Scanning innovation can improve personalized medicine (http://www.vtnews.vt.edu/articles/2012/11/112712-engineering-scanninginnovation.html)
This story can be found on the Virginia Tech News website:
http://www.vtnews.vt.edu/articles/2014/01/012914-engineering-guohuacaonsf.html

Lynn A. Nystrom | VT News
Further information:
http://www.vt.edu

More articles from Medical Engineering:

nachricht An LED-based device for imaging radiation induced skin damage
30.03.2017 | The Optical Society

nachricht A Challenging European Research Project to Develop New Tiny Microscopes
28.03.2017 | Technische Universität Braunschweig

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>