Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unlocking the Brain's Secrets Using Sound

23.01.2014
Potential applications include treatments for epilepsy and blindness

The brain is a reclusive organ. Neurons – the cells that make up the brain, nerves, and spinal cord – communicate with each other using electrical pulses known as action potentials, but their interactions are complicated and hard to understand.

Just getting access to the brain itself is difficult: inserting devices through the skull into the brain requires surgery. But work by Technion Professors Eitan Kimmel and Shy Shoham, and Ph.D. student Misha Plaksin, may advance our ability to unlock the brain's secrets noninvasively using sound, and perhaps create new treatments for illnesses. The findings were published today (January 21, 2014) in Physical Review X (http://link.aps.org/doi/10.1103/PhysRevX.4.011004).

Scientists have known for a while that ultrasonic waves can affect cells in many ways. For instance, physicians use ultrasound to stimulate the production of blood vessels and bone; it's also used in heat therapy. When applied to neurons, ultrasonic waves can change how the neurons generate and transmit electrical signals. "Ultrasound is known to do all kinds of things in cells," says Prof. Kimmel, "but how it works in many cases isn't clear, particularly when it comes to neural stimulation."

A new model may help clarify much of this behavior. This new way of understanding the interaction of sound waves and cells relies on the cellular membrane. This microscopic structure is the skin that surrounds a cell, keeping the organelles – like the nucleus and the DNA it contains – in, and the rest of the world out. The molecules that form the membrane are arranged in such a way that there are two layers, with a space between them. According to Kimmel's model, when the ultrasonic waves encounter a cell, the two layers of the cellular membrane begin to vibrate (much like how a person's vocal cords vibrate when air passes through the larynx). Cell membranes also act as capacitors, storing electrical charge. As the layers vibrate, the membrane's electrical charge also moves, creating an alternating current that leads to a charge accumulation. The longer the vibrations continue, the more charge builds up in the membrane. Eventually, enough charge builds up that an action potential is created.

The Technion team was able to use the model to predict experimental results that were then verified using brain stimulation experiments performed in mice by a team at Stanford University. According to Prof. Shoham, this is "the first predictive theory of ultrasound stimulation." All of these results mean that scientists might be on the verge of finally understanding how ultrasound affects nerve cells.

And this new understanding could lead to important new medical advances. For example, scientists could use ultrasonic waves to probe the brain's internal structure, a non-invasive technique that would be safer than implanting electrodes and complement the information produced by MRI scans. Physicians could also conceivably use ultrasound to treat epileptic seizures. And Shoham has begun studying the ways in which ultrasonic waves could stimulate cells in the retina, possibly creating images and letting people see without light. “There is great potential for additional applications,” says Kimmel.

The Technion team's findings also illustrate how important it is to get a theoretical understanding of things in nature. After all, says Shoham, "there's only so much you can do with effects you don't understand."

Professors Eitan Kimmel and Shy Shoham are members of the Faculty of Biomedical Engineering, and the Russell Berrie Nanotechnology Institute at the Technion-Israel Institute of Technology.

The Technion-Israel Institute of Technology is a major source of the innovation and brainpower that drives the Israeli economy, and a key to Israel’s renown as the world’s “Start-Up Nation.” Its three Nobel Prize winners exemplify academic excellence. Technion people, ideas and inventions make immeasurable contributions to the world including life-saving medicine, sustainable energy, computer science, water conservation and nanotechnology. The Joan and Irwin Jacobs Technion-Cornell Innovation Institute is a vital component of Cornell NYC Tech, and a model for graduate applied science education that is expected to transform New York City’s economy.

American Technion Society (ATS) donors provide critical support for the Technion—more than $1.9 billion since its inception in 1940. Based in New York City, the ATS and its network of chapters across the U.S. provide funds for scholarships, fellowships, faculty recruitment and chairs, research, buildings, laboratories, classrooms and dormitories, and more.

Kevin Hattori | Newswise
Further information:
http://www.ats.org

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>