Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unlocking the Brain's Secrets Using Sound

23.01.2014
Potential applications include treatments for epilepsy and blindness

The brain is a reclusive organ. Neurons – the cells that make up the brain, nerves, and spinal cord – communicate with each other using electrical pulses known as action potentials, but their interactions are complicated and hard to understand.

Just getting access to the brain itself is difficult: inserting devices through the skull into the brain requires surgery. But work by Technion Professors Eitan Kimmel and Shy Shoham, and Ph.D. student Misha Plaksin, may advance our ability to unlock the brain's secrets noninvasively using sound, and perhaps create new treatments for illnesses. The findings were published today (January 21, 2014) in Physical Review X (http://link.aps.org/doi/10.1103/PhysRevX.4.011004).

Scientists have known for a while that ultrasonic waves can affect cells in many ways. For instance, physicians use ultrasound to stimulate the production of blood vessels and bone; it's also used in heat therapy. When applied to neurons, ultrasonic waves can change how the neurons generate and transmit electrical signals. "Ultrasound is known to do all kinds of things in cells," says Prof. Kimmel, "but how it works in many cases isn't clear, particularly when it comes to neural stimulation."

A new model may help clarify much of this behavior. This new way of understanding the interaction of sound waves and cells relies on the cellular membrane. This microscopic structure is the skin that surrounds a cell, keeping the organelles – like the nucleus and the DNA it contains – in, and the rest of the world out. The molecules that form the membrane are arranged in such a way that there are two layers, with a space between them. According to Kimmel's model, when the ultrasonic waves encounter a cell, the two layers of the cellular membrane begin to vibrate (much like how a person's vocal cords vibrate when air passes through the larynx). Cell membranes also act as capacitors, storing electrical charge. As the layers vibrate, the membrane's electrical charge also moves, creating an alternating current that leads to a charge accumulation. The longer the vibrations continue, the more charge builds up in the membrane. Eventually, enough charge builds up that an action potential is created.

The Technion team was able to use the model to predict experimental results that were then verified using brain stimulation experiments performed in mice by a team at Stanford University. According to Prof. Shoham, this is "the first predictive theory of ultrasound stimulation." All of these results mean that scientists might be on the verge of finally understanding how ultrasound affects nerve cells.

And this new understanding could lead to important new medical advances. For example, scientists could use ultrasonic waves to probe the brain's internal structure, a non-invasive technique that would be safer than implanting electrodes and complement the information produced by MRI scans. Physicians could also conceivably use ultrasound to treat epileptic seizures. And Shoham has begun studying the ways in which ultrasonic waves could stimulate cells in the retina, possibly creating images and letting people see without light. “There is great potential for additional applications,” says Kimmel.

The Technion team's findings also illustrate how important it is to get a theoretical understanding of things in nature. After all, says Shoham, "there's only so much you can do with effects you don't understand."

Professors Eitan Kimmel and Shy Shoham are members of the Faculty of Biomedical Engineering, and the Russell Berrie Nanotechnology Institute at the Technion-Israel Institute of Technology.

The Technion-Israel Institute of Technology is a major source of the innovation and brainpower that drives the Israeli economy, and a key to Israel’s renown as the world’s “Start-Up Nation.” Its three Nobel Prize winners exemplify academic excellence. Technion people, ideas and inventions make immeasurable contributions to the world including life-saving medicine, sustainable energy, computer science, water conservation and nanotechnology. The Joan and Irwin Jacobs Technion-Cornell Innovation Institute is a vital component of Cornell NYC Tech, and a model for graduate applied science education that is expected to transform New York City’s economy.

American Technion Society (ATS) donors provide critical support for the Technion—more than $1.9 billion since its inception in 1940. Based in New York City, the ATS and its network of chapters across the U.S. provide funds for scholarships, fellowships, faculty recruitment and chairs, research, buildings, laboratories, classrooms and dormitories, and more.

Kevin Hattori | Newswise
Further information:
http://www.ats.org

More articles from Medical Engineering:

nachricht Tiny mechanical wrist gives new dexterity to needlescopic surgery
24.07.2015 | Vanderbilt University

nachricht Printing implants with the laser
21.07.2015 | Laser Zentrum Hannover e.V.

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Glaciers melt faster than ever

Glacier decline in the first decade of the 21st century has reached a historical record, since the onset of direct observations. Glacier melt is a global phenomenon and will continue even without further climate change. This is shown in the latest study by the World Glacier Monitoring Service under the lead of the University of Zurich, Switzerland.

The World Glacier Monitoring Service, domiciled at the University of Zurich, has compiled worldwide data on glacier changes for more than 120 years. Together...

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Reliable and extremely long-lasting – high-voltage power electronics for network expansion

04.08.2015 | Power and Electrical Engineering

Riding a horse is far more complex than riding simulators

04.08.2015 | Agricultural and Forestry Science

CO2 removal cannot save the oceans – if we pursue business as usual

04.08.2015 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>