Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Tennessee Space Institute researchers develop laser technology to fight cancer

24.07.2012
Researchers have harnessed the power of lasers to find, map and non-invasively destruct cancerous tumors

Researchers at the Center for Laser Applications at the University of Tennessee Space Institute in Tullahoma have developed a technology that goes on a "seek and destroy" mission for cancerous tumors. They have harnessed the power of lasers to find, map and non-invasively destruct cancerous tumors.

Christian Parigger, associate professor of physics, and Jacqueline Johnson, associate professor of mechanical, aerospace, and biomedical engineering, along with Robert Splinter of Splinter Consultants, have developed the invention. The technology uses a femtosecond laser, which means it pulses at speeds of one-quadrillionth of a second. The high speed enables the laser to focus in on a specific region to find and acutely map a tumor.

A video about the research can be viewed by visiting http://youtu.be/9I2M_7oCOGs.

"Using ultra-short light pulses gives us the ability to focus in a well confined region and the ability for intense radiation," said Parigger. "This allows us to come in and leave a specific area quickly so we can diagnose and attack tumorous cells fast."

Once the cancerous area is precisely targeted, only the intensity of the laser radiation needs to be turned up in order to irradiate, or burn off, the tumor. This method has the potential to be more exact than current methods and to be done as an outpatient procedure replacing intensive surgery.

"Because the femtosecond laser radiation can be precisely focused both spatially and temporally, one can avoid heating up too many other things that you do not want heated," said Parigger. "Using longer laser-light pulses is similar to leaving a light bulb on, which gets warm and can damage healthy tissue."

The technology can be especially helpful to brain cancer victims. The imaging mechanism can non-invasively permeate thin layers of bone, such as the skull, and can help define a targeted treatment strategy for persistent cancer. The method also overcomes limitations posed by current treatments in which radiation may damage portions of healthy brain tissue. It also may overcome limitations of photodynamic therapy that has restricted acceptance and surgery that may not be an option if not all carcinogenic tissue can be removed.

"If you have a cancerous area such as in the brain, the notion is if you see something and take care of it, it won't spread," said Parigger. "This treatment overcomes difficulties in treating brain cancer and tumors. And it has the promise of application to other areas, as well."

The researchers are working to bring their technology to market with the University of Tennessee Research Foundation, a non profit corporation responsible for commercializing the university's technologies and supporting UT research.

Whitney Heins | EurekAlert!
Further information:
http://www.utk.edu
http://youtu.be/9I2M_7oCOGs.

More articles from Medical Engineering:

nachricht New technique makes brain scans better
22.06.2017 | Massachusetts Institute of Technology

nachricht New technology enables effective simultaneous testing for multiple blood-borne pathogens
13.06.2017 | Elsevier

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>