Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Tennessee Space Institute researchers develop laser technology to fight cancer

24.07.2012
Researchers have harnessed the power of lasers to find, map and non-invasively destruct cancerous tumors

Researchers at the Center for Laser Applications at the University of Tennessee Space Institute in Tullahoma have developed a technology that goes on a "seek and destroy" mission for cancerous tumors. They have harnessed the power of lasers to find, map and non-invasively destruct cancerous tumors.

Christian Parigger, associate professor of physics, and Jacqueline Johnson, associate professor of mechanical, aerospace, and biomedical engineering, along with Robert Splinter of Splinter Consultants, have developed the invention. The technology uses a femtosecond laser, which means it pulses at speeds of one-quadrillionth of a second. The high speed enables the laser to focus in on a specific region to find and acutely map a tumor.

A video about the research can be viewed by visiting http://youtu.be/9I2M_7oCOGs.

"Using ultra-short light pulses gives us the ability to focus in a well confined region and the ability for intense radiation," said Parigger. "This allows us to come in and leave a specific area quickly so we can diagnose and attack tumorous cells fast."

Once the cancerous area is precisely targeted, only the intensity of the laser radiation needs to be turned up in order to irradiate, or burn off, the tumor. This method has the potential to be more exact than current methods and to be done as an outpatient procedure replacing intensive surgery.

"Because the femtosecond laser radiation can be precisely focused both spatially and temporally, one can avoid heating up too many other things that you do not want heated," said Parigger. "Using longer laser-light pulses is similar to leaving a light bulb on, which gets warm and can damage healthy tissue."

The technology can be especially helpful to brain cancer victims. The imaging mechanism can non-invasively permeate thin layers of bone, such as the skull, and can help define a targeted treatment strategy for persistent cancer. The method also overcomes limitations posed by current treatments in which radiation may damage portions of healthy brain tissue. It also may overcome limitations of photodynamic therapy that has restricted acceptance and surgery that may not be an option if not all carcinogenic tissue can be removed.

"If you have a cancerous area such as in the brain, the notion is if you see something and take care of it, it won't spread," said Parigger. "This treatment overcomes difficulties in treating brain cancer and tumors. And it has the promise of application to other areas, as well."

The researchers are working to bring their technology to market with the University of Tennessee Research Foundation, a non profit corporation responsible for commercializing the university's technologies and supporting UT research.

Whitney Heins | EurekAlert!
Further information:
http://www.utk.edu
http://youtu.be/9I2M_7oCOGs.

More articles from Medical Engineering:

nachricht Rutgers researchers develop automated robotic device for faster blood testing
14.06.2018 | Rutgers University

nachricht Speech comprehension with a cochlear implant
04.06.2018 | Universität zu Lübeck

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>