Unique image precision for disease treatment

Symbia IntevoTM*, the world's first xSPECT* system, integrates metabolic information from single photon emission computed tomography (SPECT) into computed tomography (CT) images.

Previously, SPECT/CT images had low spatial resolution and physicians needed extensive experience and additional follow-up studies to decide whether a metabolic anomaly reflected a tumor or other diseases. Symbia Intevo also enables physicians to determine tumor size and thus plan treatment and monitor outcomes.

During SPECT examinations, patients are given low doses of radiopharma­ceuticals that emit radiation when they react with a particular body tissue. Different metabolic processes can thus be observed depending on the agent administered. To determine the location of a metabolic disorder in the body, SPECT information is overlaid with CT images showing the anatomy of the body.

Until now, the problem has been that SPECT examinations offer only low spatial resolution and the high-precision CT images have to be adapted to match them. It can happen that the resulting image no longer clearly shows whether the metabolic disorder observed is inside or outside the bone. It would initially be unclear whether the anomaly was caused by a tumor in the bone or something else, such as a soft tissue inflammation.

The developers at Siemens Health­care have now integrated SPECT and CT data in such a way that the high spatial resolution of the x-ray images remains intact and the SPECT images are significantly improved. The two datasets are generated sequentially during reconstruction in the same device using reference parameters such as the position of the detectors relative to the patient.

New, iterative image reconstruction algorithms refine the data in several passes. It was not previously possible to perform such complex calculation processes at the high resolution used in the CT images. That's why, in addition to new software, Symbia Intevo is also equipped with a powerful 64-bit computer.

The precise xSPECT data also makes it possible to determine the volume of the radiopharmaceutical used. This means that physicians can observe the change in metabolic activity and check whether their treatment is working.

Symbia Intevo also utilizes state-of-the-art algorithms that use the CT measurements to assign each voxel (three-dimensional pixel) in the xSPECT image to a particular class-fatty tissue, soft tissue, air, or hard (external) and soft (internal) bone areas. This makes it easy to recognize the body part where the metabolic disorder is located.

* Symbia Intevo and xSPECT are not commercially available in all countries. Due to regulatory reasons their future availability cannot be guaranteed.

http://www.siemens.com/innovationnews

Media Contact

Dr. Norbert Aschenbrenner Siemens InnovationNews

All latest news from the category: Medical Engineering

The development of medical equipment, products and technical procedures is characterized by high research and development costs in a variety of fields related to the study of human medicine.

innovations-report provides informative and stimulating reports and articles on topics ranging from imaging processes, cell and tissue techniques, optical techniques, implants, orthopedic aids, clinical and medical office equipment, dialysis systems and x-ray/radiation monitoring devices to endoscopy, ultrasound, surgical techniques, and dental materials.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors