Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uncovering cancer's inner workings by capturing live images of growing tumors

18.09.2013
New technology presented at OSA's Frontiers in Optics meeting will help fight cancer

Scientists seeking new ways to fight cancer often try to understand the subtle, often invisible, changes to DNA, proteins, cells, and tissue that alter the body's normal biology and cause disease.


The new imaging tool reveals strikingly different networks of blood vessels surrounding different types of tumors in a mouse model. Left: breast cancer in the breast. Middle: metastatic breast cancer in the brain. Right: ectopic breast cancer in the skin.

Credit: Nature Medicine

Now, to aid in that fight, a team of researchers has developed a sophisticated new optical imaging tool that enables scientists to look deep within tumors and uncover their inner workings. In experiments that will be described at Frontiers in Optics (FiO), The Optical Society's (OSA) Annual Meeting, Dai Fukumura and his colleagues will present new optical imaging techniques to track the movement of molecules, cells, and fluids within tumors; examine abnormalities in the blood vessel network inside them; and observe how the tumors were affected by treatments.

These techniques, created by Fukumura and his long-term collaborators at Massachusetts General Hospital and Harvard Medical School, combine two different high-tech optical imaging methods that were custom-built for the research. One is called multiphoton laser-scanning microscopy (MPLSM), which is an advanced fluorescence imaging technology that is now commercially available at the high end of the microscope market. The other is called optical frequency domain imaging (OFDI), which images tissues by their light scattering properties. According to Fukumura, OFDI is gaining popularity in the optical imaging field but has yet to become commercially available.

"MPLSM overcomes many of the limitations from which conventional microscopy and confocal microscopy suffer, and OFDI provides robust large volume imaging data," Fukumura said.

Fukumura will present their research at FiO 2013, taking place Oct. 6-10 in Orlando, Fla. There, he will describe how his unique technique can image tumors inside and out, and show detailed pictures of live tumors—images that he and colleagues call "astonishing."

He added that while the new combined approach would be too expensive to be used for routine diagnostic purposes, it promises to help researchers better understand the intricate workings of human cancer and aid in drug discovery to treat cancer. "These optical imaging approaches can provide unprecedented insights in the biology and mechanisms of cancer," he said.

Presentation FW5A.2, "Experimental Methods for In Vivo Tissue Imaging," takes place Wednesday, Oct. 9 at 4:15 p.m. EDT at the Bonnet Creek Ballroom, Salon IV at the Hilton Bonnet Creek in Orlando, Fla.

About the Meeting

Frontiers in Optics (FiO) 2013 is The Optical Society's (OSA) 97th Annual Meeting and is being held together with Laser Science XXIX, the annual meeting of the American Physical Society (APS) Division of Laser Science (DLS). The two meetings unite the OSA and APS communities for five days of quality, cutting-edge presentations, fascinating invited speakers and a variety of special events spanning a broad range of topics in optics and photonics—the science of light—across the disciplines of physics, biology and chemistry. An exhibit floor featuring leading optics companies will further enhance the meeting. More information at http://www.FrontiersinOptics.org.
About OSA

Founded in 1916, The Optical Society (OSA) is the leading professional society for scientists, engineers, students and business leaders who fuel discoveries, shape real-world applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership programs, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of professionals in optics and photonics. For more information, visit http://www.osa.org.

Lyndsay Meyer | EurekAlert!
Further information:
http://www.osa.org

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>