Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using Ultrasound to Combat Liver Tumors

21.03.2013
Fraunhofer MEVIS presents promising intermediate results as part of the FUSIMO EU project.

Ultrasound can do much more than record images from the body. Clinicians now use ultrasound to treat tumors. Powerful, concentrated ultrasound waves are focused in the patient’s body to heat cancer cells to 60 degrees Celsius, destroying them and leaving healthy tissue largely unharmed.

Until now, this ‘focused ultrasound therapy’ has only been approved for a small number of diseases, such as uterine tumors and prostate cancer. In the context of the FUSIMO EU project, MEVIS researchers work to expand the application of the method to other organs, such as the liver, which shift in the abdomen during breathing. Now, two years after the beginning of the project, many promising intermediate results have been attained.

Treating the liver with focused ultrasound presents a major problem: The organ shifts back and forth during breathing. This increases the risk that the ultrasound beam path misses the cancer cells and instead heats the surrounding healthy tissue too strongly. For this reason, researchers have only applied this method for patients under general anesthesia. To treat a tumor with ultrasound, the medical ventilator is paused for a few seconds so that the patient remains absolutely still. However, general anesthesia presents its own risks and strains the patient, negating the largest advantage of focused ultrasound therapy – its non-invasive nature.

To solve this problem, the FUSIMO EU project employs a different strategy. If ultrasound therapy for a moving liver can be simulated with a computer as realistically as possible, the likelihood of using such treatment on the organ without general anesthetic rises greatly. Ultrasound treatment would be either activated only when the tumor crosses the focus or by tracking the moving abscess so that it remains in the beam path. FUSIMO, coordinated by Fraunhofer MEVIS, develops the essential software for this vision.

After two years, the project has reached an important milestone: Experts have produced software with which liver operations using ultrasound can be individually simulated for each patient. Magnetic resonance data build the foundation from which 3D images of a patient’s abdomen are generated with additional information about the breathing movements over the time.

Simulations of ultrasound interventions with FUSIMO software are based upon these data sets. To initiate a simulation, researchers enter the time, location, and strength of the desired ultrasound activation. The software created by Fraunhofer MEVIS to efficiently simulate abdominal temperature links two developments: the calculation of ultrasound diffusion provided by the Israeli firm InSightec Ltd. as well as a model of liver movement during breathing from the Computer Vision Lab at ETH Zurich. The software generates an abdominal ‘temperature map’ that indicates whether a moving tumor has been sufficiently heated and whether the surrounding tissue has been damaged. In case of suboptimal results, the simulation can be repeated with different parameters. In the long term, the software could help clinicians plan operations and monitor therapy outcomes.

At the European Radiologist Congress in Vienna, chief radiologist at La Sapienza University in Rome Carlo Catalano stated, “High-intensity focused ultrasound under MRI guidance has become a frequently applied means of treating non-invasive tumors – for example in the treatment of fibroadenoma of uterus and of bone metastases – but treating tumors in moving organs still represents a major challenge due to several complexities.” In this respect, FUSIMO is an exciting project aimed at developing computer simulations for treating the liver with focused ultrasound.

In cooperation with both the Institute for Medical Science and Technology (IMSaT) at the University of Dundee and La Sapienza University, MEVIS experts will refine the software during the remaining project year and validate it by comparing experimental data with results from the simulation, which is necessary for determining how realistically the software performs. In principle, this procedure could be applied to other abdominal organs that are shifted by breathing and difficult to target with the ultrasound beam path, including stomach, kidneys, and duodenum. In addition, specialists are working on a “medicine taxi”: cancer medication enclosed in a small fat globule and inserted into the circulatory system. Focused ultrasound beams function as keys to open the globules when inside tumors in organs such as the liver. This process raises the efficacy of the medicine and minimizes harmful side effects.

About the FUSIMO project:
FUSIMO stands for “Patient specific modelling and simulation of focused ultrasound in moving organs.” The EU project commenced in 2011 and is funded for three years with 4.7 million euro. Eleven institutions from nine countries are involved. FUSIMO is coordinated by the Fraunhofer Institute for Medical Image Computing MEVIS in Bremen, Germany. The second project review by EU experts will take place on March 21 in Brussels.

Bianka Hofmann | Fraunhofer-Gesellschaft
Further information:
http://www.fusimo.eu/
http://www.mevis.fraunhofer.de/

More articles from Medical Engineering:

nachricht Artificial intelligence may help diagnose tuberculosis in remote areas
25.04.2017 | Radiological Society of North America

nachricht Pharmacoscpy: Next-Generation Microscopy
25.04.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>