Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New UC Sensor Promises Rapid Detection of Dangerous Heavy Metal Levels in Humans

02.08.2011
UC researchers have developed the first lab-on-a-chip sensor to provide fast feedback regarding levels of the heavy metal manganese in humans. The sensor is both environmentally and child friendly, and will first be field tested in Marietta, Ohio, where a UC researcher is leading a long-term health study on the potential health effects of heavy metals.

Work by University of Cincinnati researchers to create a sensor that provides fast feedback related to the presence and levels of heavy metals – specifically manganese – in humans is published in the August issue of the prestigious international journal, Biomedical Microdevices.

Described in the article is the development of a low-cost, disposable lab-on-a-chip sensor that detects highly electronegative heavy metals more quickly than current technology generally available in health-care settings. It’s envisioned that the new UC sensor technology will be used in point-of-care devices that provide needed feedback on heavy-metal levels within about ten minutes.

It’s expected that the sensor will have potential for large-scale use in clinical, occupational and research settings, e.g., for nutrition testing in children.

The new sensor is environmentally friendly in that its working electrode is made of bismuth vs. the more typical mercury, and it’s child friendly in that it requires only a droplet or two of blood for testing vs. the typical five-milliliter sample now required.

Explained one of the researchers, UC’s Ian Papautsky, “The conventional methods for measuring manganese levels in blood currently requires about five milliliters of whole blood sent to a lab, with results back in 48 hours. For a clinician monitoring health effects by measuring these levels in a patient’s blood – where a small level of manganese is normal and necessary for metabolic functions – you want an answer much more quickly about exposure levels, especially in a rural, high-risk area where access to a certified metals lab is limited. Our sensor will only require about two droplets of blood serum and will provide results in about ten minutes. It’s portable and usable anywhere.”

Papautsky, UC associate professor of electrical and computer engineering, is co-author of the Biomedical Devices-published research, “Lab-on-a-Chip Sensor for Detection of Highly Electronegative Heavy Metals by Anodic Stripping Voltammetry.” Other co-authors are Erin Haynes, assistant professor of environmental engineering; William Heineman, distinguished research professor of chemistry; and just-graduated electrical and computer engineering doctoral student Preetha Jothimuthu, just-graduated chemistry doctoral student Robert Wilson, and biomedical engineering undergraduate research co-op student Josi Herren.

FIRST FIELD TEST OF SENSOR EXPECTED IN 2012 IN MARIETTA, OHIO
One specific motivation for developing the sensor was an ongoing project by UC’s Erin Haynes, who is studying air pollution and the health effects of manganese and lead in Marietta, Ohio. Manganese is emitted in that area because it is home to the only manganese refinery in the United States and Canada. Preliminary results from UC’s Mid-Ohio Valley Air Pollution Study (M.A.P.S.) found elevated levels of manganese in Marietta residents when compared to those who live in other cities.
HOW THE UC SENSOR WORKS
The new UC sensor uses a technology called anodic stripping voltammetry that incorporates three electrodes: a working electrode, a reference electrode and an auxiliary electrode.

A critical challenge for such sensors is the detection of electronegative metals like manganese. Detection is difficult because hydrolysis, the splitting of a molecule into two parts by the addition of a water molecule, at the auxiliary electrode severely limits a sensor’s ability to detect an electronegative metal.

To resolve this challenge, the UC team developed a thin-film bismuth working electrode vs. the conventional mercury or carbon electrode. The favorable performance of the bismuth working electrode combined with its environmentally friendly nature means the new sensor will be especially attractive in settings where a disposable lab-on-a-chip is wanted.

In addition, the UC team also optimized the sensor layout and working-electrode surface to further reduce the effects of hydrolysis and to boost the reliability and sensitivity in detecting heavy metals. The new sensor layout better allowed for its functioning, which consists of taking of a blood serum sample, stripping out the heavy metal and then measuring that heavy metal.

The end result is the first lab-on-a-chip able to consistently pinpoint levels of highly electronegative manganese in humans. The new sensor also exhibits high reliability over multiple days of use, with hours of continuous operation. With further developments, the chip may even be converted into a self-check mechanism, such as with glucose screening for diabetics.

FUNDING
Funding for this research has been provided by the National Institute of Environmental Health Sciences, the National Institute of Occupational Safety and Health Pilot Research Project Training Program and the University of Cincinnati.

M.B. Reilly | EurekAlert!
Further information:
http://www.uc.edu/news/NR.aspx?id=13977
http://www.uc.edu

More articles from Medical Engineering:

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

nachricht New PET radiotracer identifies inflammation in life-threatening atherosclerosis
02.03.2017 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>