Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UBC researchers illuminate link between sodium, calcium and heartbeat using Canadian Light Source

14.02.2012
That flutter in your heart may have more to do with the movement of sodium ions than the glance of a certain someone across a crowded room.

Using the Canadian Light Source synchrotron, researchers from the University of British Columbia have revealed, for the first time, one of the molecular mechanisms that regulates the beating of heart cells by controlling the movement of sodium in out of the cells – and what calcium has to do with it.

The findings, published February 14 in the Proceedings of the National Academy of Sciences, sheds new light on this crucial physiological process while revealing the root cause and possible treatment targets of two potentially life-threatening cardiac arrhythmia conditions.

The contraction and relaxation of heart muscle cells depend on minute but finely regulated electrical impulses that are created when charged atoms – or ions – of metals such as sodium, potassium and calcium pass through complex molecular channels inside and between cells. Irregular heartbeats, referred to medically as arrhythmias, can happen when these channels leak or otherwise malfunction. Professors Filip van Petegem and Christopher Ahern, members of UBC's Cardiovascular Research Group, used the CLS to determine the molecular structure of a part of the channel that controls the flow of sodium to cells in the heart, as well as in other electrically-excitable cells such as in the nervous system.

"The heart is an electrical organ that depends on precise electrical signals to contract [and pump blood]" explains van Petegem. "It is crucial for heart rate that the signalling, controlled by the movement of sodium, be exact. So the entry of sodium into the cell is tightly regulated."

The sodium channel that passes through the outer membrane of heart cells is actually a huge, intertwined four-part molecule. The teams of Van Petegem and Ahern chose a section of the molecule that appeared to regulate the closing of the channel by forming a plug, thus stopping sodium from getting through.

The researchers were surprised to discover that a protein called calmodulin binds to the sodium channel, keeping it open by preventing the plug from forming. Calcium ions, in turn, regulate the connection between the protein and the channel: calcium ions cause the protein to hook up to the channel, keeping it open and letting sodium through.

Problems occur with the system when genetic mutations change the shape of the channel at the site where the protein binds, affecting how well the channel can open and close. The result – the flow of sodium into the muscle cells is disrupted and the heart does not beat regularly.

The scientists have been able to identify mutations in the site that lead to two different kinds of heart arrhythmia: Brugada Syndrome and Long Q-T type 3, so-called from the tell-tale trace doctors see on the ECG of patients suffering from the problem. Brugada syndrome is considered to be caused by not enough sodium getting into cells, while long Q-T is the result of too much sodium.

The results of the study could pave the way for the development of new drugs that can shore up how the calmodulin protein binds to the sodium channel, effectively treating both conditions as well as other arrhythmias.

"It's really a very elegant mechanism," notes van Petegem. "Many channels are regulated by calmodulin but not in such a simple way."

About the Canadian Light Source: The Canadian Light Source is Canada's national centre for synchrotron research and is a global leader and a recognized centre of excellence in synchrotron science and its applications. Located on the University of Saskatchewan campus in Saskatoon, the CLS has hosted over 4,600 user visits from academic institutions, government, and industry, and delivered over 15,000 experimental shifts to users from across Canada and 18 countries since 2005. CLS operations are funded by Western Economic Diversification Canada, Natural Sciences and Engineering Research Council, National Research Council of Canada, Canadian Institutes of Health Research, the Government of Saskatchewan and the University of Saskatchewan.

Matthew Dalzell | EurekAlert!
Further information:
http://www.lightsource.ca
http://www.lightsource.ca/media/quickfacts.php

More articles from Medical Engineering:

nachricht New technique makes brain scans better
22.06.2017 | Massachusetts Institute of Technology

nachricht New technology enables effective simultaneous testing for multiple blood-borne pathogens
13.06.2017 | Elsevier

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>