Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Triage Technology with a Star Trek Twist

29.05.2009
Triage technology comes with a Star Trek twist, at the U.S. Department of Homeland Security’s Science & Technology Directorate (DHS S&T).

Determining who needs medical care at the scene of a disaster is still pretty old-fashioned: emergency responders bent over a victim, checking body temperature, heart rate, and muscle movement. Up close and personal, the entire process can take 3-5 minutes per person.

“Human nature is to pay attention to those who are screaming and bleeding, but someone with a less obvious internal injury may be the real top priority,” said Greg Price, Director of S&T’s Tech Solutions, whose office is managing a new DHS S&T project. “In the case of large-scale triage, it is not always the squeaky wheel that needs the grease,” he says.

In partnership with the Technical Support Working Group (TSWG), Boeing and Washington University’s School of Medicine in St. Louis, S&T’s Tech Solutions group is developing the Standoff Patient Triage Tool (SPTT), a device that classic Star Trek fans will recognize for its resemblance to the medical diagnostic tool known as the tricorder.

Because time is the most precious resource in a crisis, every second shaved can be a life-saver. With this in mind, S&T wants to make a revolutionary leap forward in triage. Why not 30 seconds per person? And why not from a distance?

"We thought, ‘Wow, wouldn’t it be nice if a responder, fully clothed in an emergency suit, could have a technology to take vital signs quickly from 5 to 40 feet away?’” said Price.

Like the tricorder, SPTT takes key physiological readings necessary to any diagnosis —pulse, body temperature, and respiration. It’s triage at twenty paces.

The magic behind SPTT is a technology known as Laser Doppler Vibrometry, which has been used in aircraft and automotive components, acoustic speakers, radar technology, and landmine detection. When connected to a camera, the vibrometer can measure the velocity and displacement of vibrating objects. An algorithm then converts those data points into measurements emergency medical responders can use in their rapid assessment of a patient’s critical medical conditions.

With the help of Washington University, researchers have found that best place to capture strong readings vital signs is on the carotid artery, although strong signals have been obtained from the head, chest, abdomen, even a foot. Researchers are also testing whether readings could be taken when someone is lying in an awkward position, or wearing multiple layers of clothing. So far, the results are encouraging.

Despite its promise, the SPTT is not quite as a sophisticated as StarTrek’s tricorder, which was able to comprehensively diagnose obscure diseases. The standoff patient triage tool is a quantum leap forward for medical response, but science fiction remains on the big screen for the moment. The goal is to develop a handheld unit about the size of a legal notebook and as a thick as a ream of paper. Achieving this will require hardening of the unit, and further testing of optical stabilization technology to make sure the unit can function despite a responder’s arm and hand movements. Transition and commercialization could occur sometime mid to late 2010.

The final frontier for the SPTT, of course, is the first responders themselves. S&T’s Tech Solutions wants to put working prototypes in the hands of medical teams this fall for extensive field tests. From there, everyone is hoping for warp speed ahead.

John Verrico | Newswise Science News
Further information:
http://www.dhs.gov

More articles from Medical Engineering:

nachricht Virtual Reality in Medicine: New Opportunities for Diagnostics and Surgical Planning
07.12.2016 | Universität Basel

nachricht 3-D printed kidney phantoms aid nuclear medicine dosing calibration
06.12.2016 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>