Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New training method helps surgeons evaluate their own minimally invasive surgery skills

12.01.2009
Recent years have seen the rapid emergence of minimally invasive surgery procedures in operating theatres.

However, the training of surgeons in this field still leaves much to be desired. Researcher Magdalena Chmarra has changed this state of affairs by developing a realistic training system which records and analyses the surgeon's movements.

As a result there is now, for the first time, an objective benchmark for measuring a surgeon's basic skills in the field of minimally invasive surgery. Chmarra will receive her PhD for this research at Delft University of Technology in The Netherlands on Monday 12 January.

Recent years have seen the rapid emergence of minimally invasive surgery procedures in operating theatres. Despite its considerable advantages, this relatively recent surgical technique still has a number of drawbacks. One such disadvantage relates to the training of surgeons, which is still, for the most part, delivered in a rather unstructured manner and, moreover, without any objective benchmark with which to measure the progress made by trainee surgeons.

Training

Broadly speaking, there are currently two safe training methods for minimally invasive surgery. The first is the so-called box trainer, an enclosed rectangular box in which trainee surgeons can practise performing basic manipulative tasks with the surgical devices, such as picking up and moving objects. As they do this, they can be assessed by an experienced surgeon. Clearly, this is a somewhat subjective process.

The other option is the virtual reality trainer, employing computer simulations, which allows for excellent recording and analysis of the surgeon's actions. However, this training method still has the major disadvantage that it lacks realism. For example, users feel no tactile response when performing surgical tasks.

TrEndo

Thus both of these training methods have their drawbacks. The Delft doctoral candidate Magdalena Chmarra has sought to change this situation by developing a training tool that is realistic for the surgeon and at the same time records and analyses the motion of the instruments manipulated by the surgeon. This is accomplished with an inexpensive and relatively simple tracking device known as the ‘TrEndo’. A TrEndo incorporates three optical computer-mouse sensors which record the movements made by the surgeon in all directions.

The TrEndo has been extensively tested by medical staff at Leiden University Medical Centre, who rate the device highly. The movements that they performed with the TrEndo felt no different from those undertaken with the actual surgical devices.

TrEndo is currently undergoing further fine-tuning at Delft University of Technology.

Benchmarking

The TrEndo helps to identify the key factors underlying the basic skills required by surgeons, thus paving the way for objective benchmarking of their competence in the field of minimally invasive surgery. By means of motion analysis, Chmarra has therefore succeeded in arranging the basic skills of the participating trainee surgeons into a classification system which ranks them as being either expert, intermediate or beginner.

Frank Nuijens | alfa
Further information:
http://www.tudelft.nl

More articles from Medical Engineering:

nachricht 'Neuron-reading' nanowires could accelerate development of drugs for neurological diseases
12.04.2017 | University of California - San Diego

nachricht PET radiotracer design for monitoring targeted immunotherapy
10.04.2017 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>