Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New training method helps surgeons evaluate their own minimally invasive surgery skills

12.01.2009
Recent years have seen the rapid emergence of minimally invasive surgery procedures in operating theatres.

However, the training of surgeons in this field still leaves much to be desired. Researcher Magdalena Chmarra has changed this state of affairs by developing a realistic training system which records and analyses the surgeon's movements.

As a result there is now, for the first time, an objective benchmark for measuring a surgeon's basic skills in the field of minimally invasive surgery. Chmarra will receive her PhD for this research at Delft University of Technology in The Netherlands on Monday 12 January.

Recent years have seen the rapid emergence of minimally invasive surgery procedures in operating theatres. Despite its considerable advantages, this relatively recent surgical technique still has a number of drawbacks. One such disadvantage relates to the training of surgeons, which is still, for the most part, delivered in a rather unstructured manner and, moreover, without any objective benchmark with which to measure the progress made by trainee surgeons.

Training

Broadly speaking, there are currently two safe training methods for minimally invasive surgery. The first is the so-called box trainer, an enclosed rectangular box in which trainee surgeons can practise performing basic manipulative tasks with the surgical devices, such as picking up and moving objects. As they do this, they can be assessed by an experienced surgeon. Clearly, this is a somewhat subjective process.

The other option is the virtual reality trainer, employing computer simulations, which allows for excellent recording and analysis of the surgeon's actions. However, this training method still has the major disadvantage that it lacks realism. For example, users feel no tactile response when performing surgical tasks.

TrEndo

Thus both of these training methods have their drawbacks. The Delft doctoral candidate Magdalena Chmarra has sought to change this situation by developing a training tool that is realistic for the surgeon and at the same time records and analyses the motion of the instruments manipulated by the surgeon. This is accomplished with an inexpensive and relatively simple tracking device known as the ‘TrEndo’. A TrEndo incorporates three optical computer-mouse sensors which record the movements made by the surgeon in all directions.

The TrEndo has been extensively tested by medical staff at Leiden University Medical Centre, who rate the device highly. The movements that they performed with the TrEndo felt no different from those undertaken with the actual surgical devices.

TrEndo is currently undergoing further fine-tuning at Delft University of Technology.

Benchmarking

The TrEndo helps to identify the key factors underlying the basic skills required by surgeons, thus paving the way for objective benchmarking of their competence in the field of minimally invasive surgery. By means of motion analysis, Chmarra has therefore succeeded in arranging the basic skills of the participating trainee surgeons into a classification system which ranks them as being either expert, intermediate or beginner.

Frank Nuijens | alfa
Further information:
http://www.tudelft.nl

More articles from Medical Engineering:

nachricht Virtual Reality in Medicine: New Opportunities for Diagnostics and Surgical Planning
07.12.2016 | Universität Basel

nachricht 3-D printed kidney phantoms aid nuclear medicine dosing calibration
06.12.2016 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>