Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Tool for Helping Pediatric Heart Surgery

25.11.2009
A team of researchers at the University of California, San Diego and Stanford University has developed a way to simulate blood flow on the computer to optimize surgical designs. It is the basis of a new tool that may help surgeons plan for a life-saving operation called the "Fontan" surgery, which is performed on babies born with severe congenital heart defects.

The researchers will present their work next week at the 62nd Annual Meeting of the American Physical Society's (APS) Division of Fluid Dynamics will take place from November 22-24 at the Minneapolis Convention Center.

Babies who get this surgery have a developmental disease where one of the chambers -- or ventricles -- of the heart fails to grow properly. This leaves their hearts unable to properly circulate blood through their lungs and starves their bodies of oxygen. The lack of oxygen turns their skin blue, a condition sometimes referred to as "blue baby syndrome" for that reason.

The Fontan surgery is one of three surgeries performed immediately after birth to replumb the circulation of children born missing their left ventricles. The operation essentially connects the veins that would normally bring blood into the right side of the heart with the pulmonary arteries. The aim is to redirect the blood flow so that it becomes properly oxygenated, allowing the patient to survive with only one functional pumping chamber. Before the advent of this type of surgery in the early 1970’s, these sorts of heart conditions were uniformly fatal.

There are still risks, including exercise intolerance, blood clot formation, and eventual heart failure requiring transplantation. Doctors mitigate this risk by carefully planning the surgery, starting with images of a baby's heart and then sketching out their plans. UCSD's Alison Marsden has been working with surgeons at Rady Children's Hospital and Stanford University to develop a new computational tool to assist in this process. In addition, Dr. Marsden and cardiologist Jeff Feinstein have developed a new Y-graft design for the Fontan surgery that is expected to be put into clinical use within a few months.

"Our ultimate goal is to optimize surgeries that are tailored for individual patients so that we don't have to rely on a "one-size fits all" solution," says Marsden.

The tool first uses imaging data to construct a model of an individual baby's heart and then allows doctors to input their surgical designs. The computer can then systematically explore different potential designs using powerful optimization algorithms, similar to those used in the aerospace industry for aircraft design. It then applies fluid dynamics to simulate the blood flow after reconstruction. This way, says Marsden, surgeons can test their plans and evaluate blood flow patterns before operating.

The talk " Analysis of Alternative Polling Strategies for Derivative-Free Optimization of the Fontan Surgery" by Weiguang Yang, Jeffrey Feinstein, and Alison Marsden is at 12:06 p.m. on Tuesday, November 24, 2009.

Abstract: http://meetings.aps.org/Meeting/DFD09/Event/112194

MORE MEETING INFORMATION
The 62nd Annual DFD Meeting is largest scientific meeting of the year devoted to the fluid dynamics, it brings together researchers from around the globe to present work with applications in engineering, energy, physics, climate, astronomy, medicine, and mathematics. It will be held at the Minneapolis Convention Center in downtown Minneapolis. All meeting information, including directions to the Convention Center is at: http://www.dfd2009.umn.edu/
PRESS REGISTRATION
Credentialed full-time journalist and professional freelance journalists working on assignment for major publications or media outlets are invited to attend the conference free of charge. If you are a reporter and would like to attend, please contact Jason Bardi (jbardi@aip.org, 301-209-3091).
USEFUL LINKS
Main meeting Web site: http://meetings.aps.org/Meeting/DFD09/Content/1629
Searchable form: http://meetings.aps.org/Meeting/DFD09/SearchAbstract
Local Conference Meeting Website: http://www.dfd2009.umn.edu/
PDF of Meeting Abstracts: http://flux.aps.org/meetings/YR09/DFD09/all_DFD09.pdf
Division of Fluid Dynamics page: http://www.aps.org/units/dfd/
Virtual Press Room: SEE BELOW
VIRTUAL PRESS ROOM
The APS Division of Fluid Dynamics Virtual Press Room will contain tips on dozens of stories as well as stunning graphics and lay-language papers detailing some of the most interesting results at the meeting. Lay-language papers are roughly 500 word summaries written for a general audience by the authors of individual presentations with accompanying graphics and multimedia files. The Virtual Press Room will serve as starting points for journalists who are interested in covering the meeting but cannot attend in person. See: http://www.aps.org/units/dfd/pressroom/index.cfm

Currently, the Division of Fluid Dynamics Virtual Press Room contains information related to the 2008 meeting. In mid-November, the Virtual Press Room will be updated for this year's meeting, and another news release will be sent out at that time.

ONSITE WORKSPACE FOR REPORTERS
A reserved workspace with wireless internet connections will be available for use by reporters. It will be located in the meeting exhibition hall (Ballroom AB) at the Minneapolis Convention Center on Sunday and Monday from 8:00 a.m. to 5:00 p.m. and on Tuesday from 8:00 a.m. to noon. Press announcements and other news will be available in the Virtual Press Room.
GALLERY OF FLUID MOTION
Every year, the APS Division of Fluid Dynamics hosts posters and videos that show stunning images and graphics from either computational or experimental studies of flow phenomena. The outstanding entries, selected by a panel of referees for artistic content, originality and ability to convey information, will be honored during the meeting, placed on display at the Annual APS Meeting in March of 2010, and will appear in the annual Gallery of Fluid Motion article in the September 2010 issue of the journal Physics of Fluids.

This year, selected entries from the 27th Annual Gallery of Fluid Motion will be hosted as part of the Fluid Dynamics Virtual Press Room. In mid-November, when the Virtual Press Room is launched, another announcement will be sent out.

ABOUT THE APS DIVISION OF FLUID DYNAMICS
The Division of Fluid Dynamics of the American Physical Society exists for the advancement and diffusion of knowledge of the physics of fluids with special emphasis on the dynamical theories of the liquid, plastic and gaseous states of matter under all conditions of temperature and pressure.

Jason Socrates Bardi | Newswise Science News
Further information:
http://www.aip.org
http://www.aps.org/units/dfd/

More articles from Medical Engineering:

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>